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Many everyday decisions are made without full examination of all available 
options, and, as a result, the best available option may be missed. However, little 
is known about how such incomplete consideration affects choice behavior. We 
develop a search-theoretic choice experiment that provides new insights into how 
information gathering interacts with decision making.

Our central finding is that many decisions can be understood using the satisficing 
model of Herbert Simon (1955). Simon posited a process of item-by-item search, 
and the existence of a “satisficing” level of utility, attainment of which would induce 
the decision maker to curtail further search. Our experiments cover various settings 
that differ in the number of options available and in the complexity of these objects, 
and in all cases, we find broad support for Simon’s hypothesis. Most subjects search 
sequentially and stop search when an environmentally determined level of reserva-
tion utility has been realized.

One factor that has held back research on how incomplete search impacts choice 
is that there are no observable implications of a general model in which the set of 
objects that a subject considers may be smaller than the choice set as understood by 
an external observer.1 To identify such restrictions, we develop a new experimental 

1 The satisficing model itself has testable implications for choice data only if it is assumed that the search order 
never changes. See Paola Manzini and Marco Mariotti (2007) and Yusufcan Masatlioglu and Daisuke Nakajima 
(2009) for examples of other decision theoretic models in which the decision maker’s consideration set is smaller 
than the externally observable choice set. See also Kfir Eliaz and Ran Spiegler (2011). Ariel Rubinstein and 
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technique that incentivizes subjects to reveal not only their final choices, but also 
how their provisional choices change with contemplation time.2 This “choice pro-
cess” data provides a test bed for simple models of sequential search (see Donald 
Campbell 1978; and Caplin and Dean 2011).

A second barrier to research in this area is that there is no general way to define, 
let alone measure, the quality of decisions.3 To overcome this conceptual problem, 
subjects in our experiment select among monetary prizes presented as sequences 
of addition and subtraction operations.4 These calculations take time and effort to 
perform, making the choice problem nontrivial. As a result, we find that subjects 
regularly fail to find the best option when choosing from sets of such alternatives.

We use choice process data to test the satisficing model. We find that its two iden-
tifying features are supported by our data. First, subjects typically switch from lower 
to higher value objects, in line with information being absorbed on an item-by-item 
basis, as in sequential search theory. Second, for each of our experimental treat-
ments, we identify fixed reservation values such that most subjects curtail search 
early if, and only if, they identify an option of higher value than the reservation 
level. Taken together, these two findings characterize the satisficing model. The esti-
mated levels of reservation utility increase with set size and with object complexity.

Choice process data provide insight into search order. We find that some subjects 
search from the top of the screen to the bottom, while others do not. These search 
modes impact choice quality: those who search down from the top do poorly if good 
objects are at the bottom of the screen.

Our method for eliciting choice process data impacts the incentive to search, since 
there is an increasing chance that later choices will not be actualized. In order to 
explore the impact of these incentives, we develop a simple model of optimal search 
with psychic costs that is rich enough to cover this case in addition to standard choice 
data. We find that, while a fixed reservation level is optimal in the standard case, a 
declining reservation level is optimal for the choice process environment. Moreover, 
the reservation level in a choice process environment is always below the fixed opti-
mal level in the equivalent standard choice environment.

We test the predictions of the optimizing model by comparing behavior in the 
choice process experiment with that in a standard choice environment. We exploit 
the fact that subjects were able to, and indeed chose to, change options prior to 
finalizing decisions even in our standard choice experiments, creating a sequence 
of choices that we can interpret as choice process data. We find that standard choice 
data is indeed well described by the fixed reservation model. However, we find no 
evidence of a declining reservation level in the choice process environment. This 

Yuval Salant (2006) present a model of choice from lists, in which a decision maker searches through the available 
options in a particular order. Efe Ok (2002) considers the case of a decision maker who is unable to compare all 
the available alternatives in the choice set. These models make specific assumptions about the nature of search to 
gain empirical traction.

2 Compared to other novel data used to understand information search, such as those based on eye tracking or 
Mouselab (John Payne, James Bettman, and Eric Johnson 1993; Xavier Gabaix et al. 2006, Elena Reutskaja et al. 
2011), choice process data is more closely tied to standard choice data and revealed preference methodology.

3 See B. Douglas Bernheim and Antonio Rangel (2008); Faruk Gul and Wolfgang Pesendorfer (2008); and 
Botond K​     o​szegi and Matthew Rabin (2008) for methodological viewpoints on the classification of particular deci-
sions as “poor” or “mistaken.”

4 Caplin and Dean (2011) characterize theoretical connections between choice process data, sequential search, 
and reservation stopping rules with arbitrary objects of choice.
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suggests that our subjects may be satisficing for the reasons that Simon (1955) origi-
nally proposed, as a rule of thumb that performs adequately across a broad range 
of environments, rather than finely honing their search strategy to each choice envi-
ronment they face. We find some evidence that reservation levels in choice process 
settings are below those in equivalent standard choice settings.

While our findings are in line with simple theories of sequential search, we con-
sider (and reject) an alternative model in which subjects search the entire choice 
set but make calculation errors that lead to choice mistakes. We estimate a random 
utility model in which the size of the utility error depends on the size and complex-
ity of the choice set. Fitting the model requires seemingly large perceptual errors, 
yet simulations based on the fitted model significantly overestimate subject perfor-
mance in large and complex choice sets. Moreover, the estimated calculation errors 
are incompatible with the fact that subjects almost always switch from lower to 
higher value alternatives, in line with the principle of sequential search.

The article is arranged into six sections. In Section I we introduce our experimen-
tal protocols. In Section II we describe the pattern of choice mistakes exhibited by 
our subjects. In Section III we test the satisficing model and show how reservation 
rules vary across environments. Order effects on choice are addressed in Section IV. 
Section V investigates the connection between standard choice experiments and 
choice process experiments. Section VI contains our estimates of the model based 
entirely on calculation errors rather than sequential search.

I.  Experimental Design

We conducted experiments of four types. Experiment 1 measures choice qual-
ity in our experimental task in a standard choice experiment. Experiment 2 uses 
the choice process design to examine provisional choices within the same environ-
ment. Experiment 3 uses the choice process experiment to explore search order. 
Experiment 4 imposes a time limit on subjects in an otherwise standard choice task, 
allowing us to understand the source of differences in behavior between experi-
ments 1 and 2. All experiments were conducted at the Center for Experimental 
Social Science laboratory at New York University, using subjects recruited from the 
undergraduate population.

A. Experiment 1: Standard Choice

Our goal in this article is to study whether a model of information search can 
explain why people sometimes fail to choose the best available option. Hence, we 
work with objects of choice for which such failures are easy to identify: dollar 
amounts expressed as addition and subtraction operations. We conducted six treat-
ments that differ in terms of complexity (three or seven addition and subtraction 
operations for each object) and the total number of available alternatives (10, 20, or 
40). Figure 1 shows a ten option choice set with objects of complexity 3.5

5 Given that the subjects (New York University students) made negligible mistakes when purely numerical 
options were presented, we wrote out the arithmetic expressions in word form rather than in symbolic form.
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Each round began with the topmost option on the screen selected, which had a 
value of $0 and was worse than any other option. While only the final choice was 
payoff relevant, subjects could select whichever option they wanted at any time by 
clicking on the option or on the radio button next to it.6 The currently selected option 
was displayed at the top of the screen. Once subjects had finalized their selection, 
they could proceed by clicking on the submit button at the bottom of the screen. 
Subjects faced no time constraint in their choices.

The value of each alternative was drawn from an exponential distribution with 
λ = 0.25, truncated at $35 (a graph of the distribution was shown in the experimen-
tal instructions—see online supplemental material).7 The individual terms in the 
algebraic expression representing the alternative were generated stochastically in 
a manner that ensured that neither the first nor the maximal term in the expression 
were correlated with total value.

Subjects for experiment 1 took part in a single experimental session consisting of 
two practice rounds and between 27 and 36 regular rounds, drawn from all six treat-
ments. At the end of the session, two regular rounds were drawn at random, and the 
subject received the value of the final selected object in each round, in addition to 
a $10 show-up fee. Each session took about an hour, for which subjects earned an 
average of $32. In total we observed 22 undergraduate students making 657 choices.

B. Experiment 2: Choice Process

Choice process data tracks not only final choice, but also how subjects’ provi-
sional choices evolve with contemplation time. It is closely related to standard choice 
data, in that all observations represent choices, albeit indexed by time. We see these 

6 Changes that were made over the predecision period were recorded and are analyzed in Section V.
7 For each of the three choice set sizes we generated 12 sets of values, which were used to generate the choice 

objects for both the low and the high complexity treatments.

Figure 1. A Typical Choice Round

Round
2 of 30

Current selection:
four plus eight minus four

zero

three plus �ve minus seven

four plus two plus zero

four plus three minus six

four plus eight minus four

three minus three plus one

�ve plus one minus one

eight plus two minus �ve

three plus six minus �ve

four minus two minus one

�ve plus �ve minus one

Finished

Choose one:
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data as complementary to other attempts to use novel data to understand informa-
tion search, such as those based on eye tracking or Mouselab (Payne, Bettman, and 
Johnson 1993; Gabaix et al. 2006; Reutskaja et al. 2011). While choice process data 
misses out on such potentially relevant clues to search behavior as eye movements, 
it captures the moment at which search changes a subject’s assessment of the best 
option thus far encountered.

Our experimental design for eliciting choice process data has two key features. 
First, subjects are allowed to select any alternative in the choice set at any time, 
changing their selected alternative whenever they wish. Second, actualized choice is 
recorded at a random point in time unknown to the experimental subject. Only at the 
end of each round does the subject find out the time that was actualized, and what 
his or her selection had been at that time. This incentivizes subjects always to select 
the option that they perceive as best. We therefore treat their sequence of selections 
as recording their preferred option at each moment in time.8

The instructions that were given to subjects in the choice process experiment are 
available in the online supplemental material. They were informed that the actu-
alized time would be drawn from a beta distribution with parameters α = 2 and 
β = 5, truncated at 120 seconds.9 The interface for selecting and switching among 
objects was identical to that of experiment 1. A subject who finished in less than 
120 seconds could press a submit button, which completed the round as if they had 
kept the same selection for the remaining time. Typically, a subject took part in 
a session consisting of two practice rounds and 40 regular rounds. Two recorded 
choices were actualized for payment, which was added to a $10 show-up fee.

Experiment 2 included six treatments that matched the treatments in experiment 1: 
choice sets contained 10, 20, or 40 alternatives, with the complexity of each alternative 
being either three or seven operations. Moreover, exactly the same choice object val-
ues were used in the choice process and standard choice experiments. For the six treat-
ments of experiment 2, we collected data on 1,066 choice sets from 76 subjects.

C. Experiment 3: Varying Complexity

Experiment 3 was designed to explore how screen position and object complex-
ity impacts search order. All choice sets were of size 20, and the objects in each set 
ranged in complexity from one to nine operations. Subjects were instructed that 
object complexity, screen position, and object value were independent of one another. 
Incentives were as in experiment 2, the choice process experiment. Experiment 3 
was run on 21 subjects for a total of 206 observed choice sets.

D. Experiment 4: Time Constraint

While the choice process experiments included time limits, the standard choice 
experiment did not. In order to explore whether this time limit was responsible 

8 In support of this interpretation, 58 of 76 subjects in a postexperiment survey responded directly that they 
always had their most preferred option selected, while others gave more indirect responses that suggest similar 
behavior (e.g., having undertaken a recalculation before selecting a seemingly superior alternative).

9 A graph of this distribution was shown in the experimental instructions. The front-weighting in the beta distri-
bution provides an incentive for subjects to begin recording their most preferred options at an early stage.
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for differences in behavior between the two settings, we reran the standard choice 
experiment with a two minute time constraint, as in the choice process experiment. 
If subjects failed to press the submit button within 120 seconds they received $0 
for that round. For this experiment, a total of 29 subjects chose from 407 observed 
choice sets.

II.  Choice Performance

A. Standard Choice Task

Table 1 reports the results of experiment 1, the standard choice experiment. The 
top section reports the “failure rate”—the proportion of rounds in which the subject 
did not choose the option with the highest dollar value. The second section reports 
the average absolute loss—the difference in dollar value between the chosen item 
and the highest value item in the choice set.

Averaging across all treatments, subjects fail to select the best option almost 
38 percent of the time and leave $3.12, or 17 percent of the maximum amount, on 
the table in each round.10 Both of these performance measures worsen with the size 
and the complexity of the choice set, reaching a failure rate of 65 percent and an 
average loss of $7.12 in the size 40, complexity 7 treatment. Regression analysis 
shows that the difference in losses between treatments is significant.11

B. Choice Process Task

Given that our analysis of the search-based determinants of choice quality 
is based primarily on the choice process data of experiment 2, it is important to 
explore how the level and pattern of final choices compares across experiments 1 
and 2. To ensure that subjects in experiment 2 had indeed finalized their choices, we 
retain only rounds in which they explicitly press the submit button before the allot-
ted 120 seconds. This removes 94 rounds, or 8.8 percent of our total observations. 
Table 1 compares failure rates and average absolute losses by treatment for choice 
process and standard choice tasks.

In both the choice process experiment and the standard choice experiment, sub-
jects fail to find the best option more frequently and lose more money in larger and 
more complicated choice sets. However, in almost all treatments, the quality of final 
choice is worse in the choice process task than the standard choice task. We explore 
this difference in Section V, where we relate it to the different incentives in the two 
experiments. There is less incentive to continue search in the choice process task, 
given that the probability of additional effort raising the payoff falls over time.

10 There is no evidence for any effect of learning or fatigue on choice performance. The order in which choice 
rounds were presented was reversed for half the subjects, and the order of presentation did not have a significant 
effect on performance. In part, this may be because our experimental design is structured to remove learning effects. 
The decision-making context, including the distribution of prizes, is known to the decision maker at the start of each 
experimental round.

11 Absolute loss was regressed on dummies for choice set size, complexity, and interactions, with standard errors 
calculated controlling for clustering at the subject level. Losses were significantly higher at the 5 percent level for 
size 40 compared to size 10 choice sets, and for the interaction of size 40 and complexity 7 compared to size 10 
and complexity 3 choice sets.
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III.  Sequential Search and Satisficing

We use the choice process data from experiment 2 to test whether a simple 
sequential search model with a reservation level of utility can explain the failure of 
people to select the best available option. We test both whether subjects appear to 
understand the value of each searched object in full before moving on to the next 
(as in the classic search models of George Stigler 1961 and John McCall 1970), and 
whether they appear to search until an object is found that is above a fixed reserva-
tion utility level. The power of our tests depends on observing subjects switching 
from one alternative to another. Fortunately, in 67 percent of rounds we observe at 
least one occasion on which the subject switches between options after the initial 
change away from $0. The mean number of such switches is 1.4.

A. Sequential Search

Caplin and Dean (2011) provide a method of identifying whether or not choice 
process data is consistent with sequential (but possibly incomplete) search. 
Assuming that utility is monotonically increasing in money, a necessary and suf-
ficient condition for choice process data to be in line with sequential search is that 

Table 1—Performance in Choice Process Task (Experiment 2) versus Standard Choice 
Task (Experiment 1)

Failure rate (percent)
Complexity

Set size 3 7

10 Choice process 11.38 46.53
Standard choice 6.78 23.61

20 Choice process 26.03 58.72
Standard choice 21.97 56.06

40 Choice process 37.95 80.86
Standard choice 28.79 65.38

Absolute loss (dollars)
Complexity

Set size 3 7

10 Choice process 0.42 3.69
Standard choice 0.41 1.69

20 Choice process 1.62 4.51
Standard choice 1.10 4.00

40 Choice process 2.26 8.30
Standard choice 2.30 7.12

Number of observations
Complexity

Set size 3 7

10 Choice process 123 101
Standard choice 59 72

20 Choice process 219 172
Standard choice 132 132

40 Choice process 195 162
Standard choice 132 130
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successive recorded values in the choice process must be increasing. We refer to this 
as Condition 1:

Condition 1: If option y is selected at time t and option x is selected at time s > t, 
it must be the case that the value of x is no less than the value of y.12

In order to test whether our subjects are close to satisfying Condition 1, we use 
a measure of consistency proposed by Martijn Houtman and J. A. H. Maks (1985). 
The Houtman-Maks (HM) index is based on calculating the largest fraction of 
observations that are consistent with Condition 1.13

Figure 2 shows the distribution of HM indices for all 76 subjects. Over 40 percent 
of our subjects have an HM index above 0.95, while almost 70 percent have an HM 
index above 0.9—meaning that over 90 percent of their switches are consistent with 
Condition 1, and therefore consistent with sequential search. Figure 2 also shows the 
distribution of HM indices for 76,000 simulated subjects with the same number of 
switches as our subjects but who choose at random—a measure of the power of our 
test (see Stephen Bronars 1987). Clearly, the two distributions are very different, as 
confirmed by a Kolmogorov-Smirnov test ( p < 0.0001).

This analysis suggests that, for the population as a whole, sequential search does 
a good job of describing search behavior. We can also ask whether the behavior of a 
particular subject is well described by the sequential search model. To identify such 
sequential searchers, we compare each subject’s HM index with the HM indices of 
1,000 simulations of random data with exactly the same number of observations in 
each round as that subject. For the remainder of the paper we focus on the 68 out 
of 76 subjects who have an HM index above the 95th percentile of their randomly 
generated distribution.14

One feature of the sequential search model is that it revives the concept of revealed 
preference in a world of incomplete information. Panel A of Figure 3 shows how 
close our subjects are to satisfying the standard rationality assumption in each of our 
treatments, by showing the proportion of rounds in which the best alternative is cho-
sen. Panel B shows how close our subjects are to satisfying rationality for sequential 
search in each treatment by calculating the HM index with respect to Condition 1. 
The level of mistakes as measured by the standard definition of revealed preference is 
far higher than by the sequential search measure. Note also that while there is strong 

12 Note that the choice process methodology identifies only a subset of searched objects: anything that is chosen 
at some point we assume must have been searched, but there may also be objects that are searched but never chosen, 
which we cannot identify. Combining our technology with a method of identifying what a subject has searched (for 
example Mouselab or eye tracking) would therefore be of interest.

13 Specifically, we identify the smallest number of observations that need to be removed for the resulting data 
to be consistent with Condition 1. The HM index is the number of remaining observations, normalized by dividing 
through by the total number of observations.

14 An alternative measure of the failure of Condition 1 would be to calculate the minimum total change in payoff 
needed in order to adjust the data to satisfy Condition 1. For example, if an object worth 12 was selected first and 
then one worth 4, we would have to make a reduction of 8 to bring the data in line with Condition 1. On the other 
hand, if a subject selected 5 and then 4, a reduction only of 1 would be needed.

The correlation between these two measures is very high in our sample: the Spearman’s rank correlation is 0.96. 
However, our subjects perform worse relative to the random benchmark according to this measure than according to 
the standard HM index. Using the new measure, 62 out of 76 subjects can be categorized as sequential search types 
using the 95th percentile of random choice simulations. This suggests that, when our subjects mistakenly switch to 
worse objects, they sometimes make large errors in terms of dollar value.
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evidence of increasing mistakes in larger and more complex choice sets according 
to the standard measure, such effects are minimal according to the sequential search 
measure. Using the latter, there is no effect of set size on mistakes, and only a small 
effect from complexity.

B. Satisficing and Reservation Utility

The essential advantage that choice process data provide in testing the satisficing 
model is that they allow us to observe occasions in which subjects continue to search 
having uncovered unsatisfactory objects. This allows us to directly test the reserva-
tion stopping rule and estimate reservation values for our different treatments.

The first indication that our subjects exhibit satisficing behavior is shown in 
Figure 4. This shows how the value of the selected object changes with order of 
selection for each of our six treatments. Each graph has one isolated point and three 
segmented lines. The isolated point shows the average object value for those who 
stop at the first object chosen.15 The first segmented line shows the average value of 
each selection from rounds in which one switch was made. The next segmented line 
shows the average value of each selection in rounds where two switches were made, 
and the final segmented line for rounds in which three switches were made.

Figure 4 is strongly suggestive of satisficing behavior. First, as we would expect 
from the preceding section, aggregate behavior is in line with sequential search: in 
all but one case, the average value of selections is increasing. Second, we can find 
reservation values for each treatment such that aggregate behavior is in line with 
satisficing according to these reservations. The horizontal lines drawn on each graph 
show candidate reservation levels, estimated using a technique we describe below. 

15 Following the initial switch away from the zero value option.

Figure 2. Distribution of HM Indices for Actual and Random Data (Experiment 2)
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In every case, the aggregate data show search continuing for values below the res-
ervation level and stopping for values above the reservation level, just as Simon’s 
theory predicts.

Estimating Reservation Levels.—In order to estimate reservation utilities for 
each treatment, we assume that all individuals in a given choice environment have 
the same reservation value ​

_
 v ​ and experience variability ε in this value each time 

they decide whether or not to continue search. Further, we assume this stochasticity 

Figure 3. Proportion of Final Choices Where the Best Option was Found and Largest Proportion of 
Switches to Higher Value (Experiment 2) with HM Index above 95th Percentile
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enters additively and is drawn independently and identically from the standard nor-
mal distribution.16 Letting v be the value of the item that has just been evaluated, 
the decision maker (DM) stops search if and only if v ≥ ​_ v ​ + ε, where ε ∿ N (0, 1). 

16 There are at least two ways to interpret the additive error term in this model. The first is that subjects calculate 
each option perfectly but have only a rough idea of their reservation value. The second is that subjects have a clear 
idea of their reservation value but see the value of each option with some error.

The existing literature regarding stochastic choice models is summarized in Pavlo Blavatsky and Ganna Pogrebna 
(2010). Models can broadly be categorized into two types. The first are “tremble” models of the type used in David 
Harless and Colin Camerer (1994). For any given decision, there is a constant probability that the subject will make 
a mistake. All types of mistake are then equally probable. The second type assumes that the value of each option is 
observed with some stochastic error. Different models of this type assume different error structures, but all assume 
that small errors are more likely than large ones.

Our estimation technique uses a model from the second category: the Fechner Model of Heteroskedastic Random 
Errors, which assumes that the reservation value is observed with an additive, normally distributed error term. In our 

Figure 4. Average Value by Selection (Experiment 2)
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To cast this as a binary choice model, let k be a decision node, ​v​k​ be the value of 
the object uncovered and ​ε​k​ the error. Note that the probability of stopping search 
is Φ​(​v​k​ − ​_ v ​)​, where Φ is the cumulative density function of the standard normal 
distribution, so we can estimate ​

_
 v ​ using maximum likelihood.

To employ this procedure using our data, we need to identify when search has 
stopped, and when it has continued. The latter is simple: search continues if a subject 
switches to another alternative after the current selection. Identifying stopped search 
is slightly more complicated. If we observe that a subject does not make any more 
selections after the current one, then there are three possibilities. First, he might have 
continued to search but run out of time before he found a better object. Second, he 
might have continued to search but already had selected the best option. Third, he might 
have stopped searching. We therefore consider a subject to have stopped searching at a 
decision node only if he made no further selections, pressed the submit button, and the 
object he had selected was not the highest value object in the choice set.

Results: Estimated Reservation Levels.—Because we assume that all individuals 
have the same distribution of reservation values in a given environment, we pool 
together all selections within each treatment for the 68 participants whose choice 
data is best modeled with sequential search. Table 2 shows the estimated reservation 
levels for each treatment, with standard errors in parentheses.

Table 2 reveals two robust patterns in the estimated reservation levels. First, res-
ervation levels decrease with complexity: using a likelihood-ratio test, estimated 
reservation levels are significantly lower for high complexity treatments than for 
low complexity treatments at all set sizes ( p < 0.001). Second, reservation levels 
increase monotonically with set size (significantly different for all pairwise com-
parisons of set sizes for both complexity levels with p < 0.001).

One question that this estimation strategy does not answer is how well the res-
ervation utility model explains our experimental data. In order to shed light on this 
question, we calculate the equivalent of the HM index for this model with the esti-
mated reservation levels of Table 2. For each treatment, we calculate the fraction of 
observations which obey the reservation strategy (i.e., subjects continue to search 
when they hold values below the reservation level and stop when they have values 
above the reservation level).

The results, aggregated across all subjects, are shown in Table 3. The estimated 
model describes about 86 percent of observations for treatments with simple objects 
and about 78 percent for complicated objects. Both of these percentages are signifi-
cantly higher than the random benchmark of 50 percent (where people arbitrarily 
stop or continue at each decision node) at the 1 percent level.

There is significant heterogeneity across individuals with respect to how well they 
follow a fixed reservation stopping rule. While the majority of subjects have HM 
indices above 75 percent, some have extremely low scores and are clearly poorly 
described by a reservation utility model with the given estimated reservation levels. 

setting, we find the tremble class of models implausible—neither intuition nor the data supports the idea that small 
errors are as likely as large ones.

In terms of the precise distribution of the error term, we tested other common alternatives: logistic and extreme 
value errors. The results under these alternative assumptions were essentially the same.
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In order to ensure these individuals are not affecting our estimates in Table 2, we 
repeat the estimation of reservation strategies without those subjects who have an 
HM index below 50 percent (an additional six subjects). These results are in Table 2 
under the rows for “Reservation-based search types.” The estimated reservation lev-
els are similar to those for the whole sample.

C. Reservation Utility or Reservation Time?

A natural question is whether our data are consistent with other stopping rules. 
One obvious candidate is a stopping rule based on a reservation time, in which 
subjects search for a fixed time and select the best option found subject to this time 
constraint. In order to assess this possibility, we redraw in Figure 5 the graphs of 
Figure 4 but show the average time of each switch, rather than the average value on 
the vertical axis.

Figure 5 provides no support for the reservation time stopping rule. Unlike in 
Figure 4, there is generally no “reservation time” such that subjects continue to 
search for times below this level and stop for times above that level (the horizontal 
lines on each graph show a reservation stopping time estimated using the procedure 
described in Section IIIB). Instead, those who identified a high value object with 
their first selection stopped quickly, while those who made the most switches took 
significantly longer. This is precisely as the reservation utility model would suggest 
and runs counter to the predictions of the reservation time model.

IV.  Search Order and Choice

In this section we show that choice process data provide insight into the order of 
search, and that this information can help predict when subjects will do badly in 
particular choice sets.

Table 2—Estimated Reservation Levels (Experiment 2)

Complexity

Set size 3 7

10 Sequential search types 9.54 (0.20) 6.36 (0.13)
Reservation-based search types 10.31 (0.23) 6.39 (0.13)

20 Sequential search types 11.18 (0.12) 9.95 (0.10)
Reservation-based search types 11.59 (0.13) 10.15 (0.10)

40 Sequential search types 15.54 (0.11) 10.84 (0.10)
Reservation-based search types 15.86 (0.12) 11.07 (0.10)

Note: Standard errors in parentheses.

Table 3—Aggregate HM Indices for Reservation-Based 
Search (Experiment 2)

Complexity

Set size 3 7

10 0.90 0.81
20 0.87 0.78
40 0.82 0.78
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The first finding is that subjects in experiment 2 tend to search from the top to the 
bottom of the screen. When we regress the order in which an object is selected on 
its position on screen, we find that the average screen position is significantly higher 
(i.e., further down the screen) for later selections.17 This relationship is more pro-
nounced for choice sets with simple, rather than complex, objects.18

17 Regressing selection number on the screen position of the selection gives a coefficient of 0.028, significant at 
the 1 percent level (allowing for clustering at the subject level).

18 For complexity 3 choice sets, regressing selection number on the screen position of the selection gives a coef-
ficient of 0.036, significant at the 1 percent level, while for complexity 7 sets the coefficient is 0.018, not significant 
at the 10 percent level.

Figure 5. Average Time by Selection (Experiment 2)
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To assess whether subjects search from top to bottom (TB), we calculate the 
fraction of observations that are consistent with this search order—in other words, 
the fraction of observations for which objects selected later appear further down 
the screen. A subject is categorized as being a TB searcher if this HM index for his 
search order is in the 95th percentile of a benchmark distribution constructed using 
random search orders. With this criterion, 53 percent of subjects in experiment 2 
are well described by TB search.

While the search order HM index is determined independently of a subject’s per-
formance, we find that TB searchers do worse when the best object appears further 
down the screen. When we regress whether a subject found the best option onto the 
screen location of the best option, the coefficient is negative (−0.03) and significant 
at the 1 percent level for TB searchers, but is smaller in magnitude (−0.01) and 
insignificant at the 10 percent level for those not classified as TB searchers.

For subjects that are strict TB searchers, sequential search has particularly strong 
implications. Thus far, we have assumed that we know an object has been searched 
only if it has been chosen at some point. However, if a strict TB searcher at some 
point selects the object at a certain screen position, then he must have searched 
all objects in screen positions above it. For example, if the object in position 10 is 
selected, then the objects in positions 1 to 9 must have been searched through as 
well. In this case, the test for sequential search is whether or not, at any given time, 
the value of the currently chosen object is higher than all the objects that fall earlier 
in the assumed search order.

In the low complexity choice environment, we find that subjects classified as TB 
searchers behave in line with this strict form of sequential search in about 92 percent 
of cases. They also do significantly better in this test than subjects that we do not 
classify as TB.19 However, even those we categorize as TB searchers violate this 
condition in about 42 percent of cases for more complicated choice sets. This sug-
gests that, in more complicated choice sets, even subjects who generally search from 
top to bottom may not fully examine all of the objects along the way.

In addition to TB search, experiment 3 enables us to explore whether or not object 
complexity impacts search order. We find not only that subjects in general search 
the screen from top to bottom, but also from simple to complex objects.20 We define 
a subject in this experiment to be a “Simple-Complex” (SC) searcher if they have a 
corresponding HM index above the 95th percentile of random search orders. Eight 
subjects are categorized as both TB and SC searchers, six as just TB searchers, three 
as just SC searchers. Only three subjects could be categorized as neither.

V.  Choice Process and Standard Choice Data

The choice process experiment has incentives that are different from those operat-
ing in a standard choice environment. To understand the impact that these incentives 
have on decisions, we characterize optimal stopping strategies in a sequential search 

19 Controlling for selection number and position on screen, the coefficient on being a Top-Bottom searcher is 
negative and significant (p = 0.005) in a regression where success or failure of top down sequential search is the 
dependent variable.

20 Regressing selection number on the screen position and complexity of the object selected gives coefficients 
of 0.037 and 0.136, respectively, both significant at the 1 percent level (allowing for clustering at the subject level).
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model that covers both the standard experiment and the choice process experiment. 
We also explore behavioral differences between experiments. In this respect we take 
advantage of the fact that, in experiment 1, subjects were able to, and indeed did, 
select options prior to hitting the submit button and finalizing their choices.21 We 
can use these intermediate clicks to test our search models in the standard choice 
environment of experiment 1, just as we did in experiment 2.

A. Condition 1 in Experiment 1

We use the intermediate choice data from experiment 1 to explore evidence for 
Condition 1, the sequential search condition, in the standard choice environment. 
These tests indicate that if anything, data from the standard choice environment are 
more in line with sequential search than choice process data. Indeed, there are even 
fewer violations of Condition 1 in experiment 1 (8 percent of rounds with a viola-
tion) than there were in experiment 2 (10 percent of rounds with a violation). Once 
again there was little effect of either complexity or choice set size on conformity 
with Condition 1.

B. A Model of Optimal Search

Given that Condition 1 applies generally in both experiments 1 and 2, we develop 
an optimizing model of sequential search that covers both experimental designs. The 
search cost is specified in utility terms, as in Gabaix et al. (2006). The DM is an 
expected utility (EU) maximizer with a utility function u  :  X → ℝ on the choice set 
X. We endow the searcher with information on one available option at time t = 0, 
a period in which no choice is to be made. We normalize u  :  X → ℝ so that the 
endowed prize has an EU of zero. At each subsequent time 1 ≤ t ≤ T, the DM faces 
the option of selecting one of the options already searched, or examining an extra 
option and paying a psychological search cost κ > 0 (in EU units). The agent’s search 
strategy from any nonempty finite subset A ⊂ X is based only on the size M of the set 
of available objects in A, not the identities of these objects. Each available prize is 
assumed ex ante to have a utility level that is independently drawn from some distribu-
tion F(z), as in our experiment which is known by the DM. There is no discounting.

To break the otherwise rigid connection between time and the number of objects 
searched, we introduce parameter q ∈ (0, 1) as the probability that searching an 
object in hand for one period will result in its identity being known. If this does 
not happen, the same geometric probability applies in the following periods. Once 
search stops, the agent must choose one of the identified objects.22

To match the choice process experimental design, we allow for the possibility 
that search after time t ≥ 1 will have no impact on what the DM receives. We let 
the nonincreasing function J(t) identify the probability that the search from time t 
on will actually impact choice. In the standard choice environment, J(t) is constant 

21 While there was no direct financial incentive for changing the selection in experiment 1, there may be a psy-
chological incentive if object selection aids memory.

22 This method of modeling makes the process of uncovering an option equivalent to the process of “locating” it 
as feasible. The strategy is more intricate if we allow unexplored options to be selected.
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at 1, while in the choice process environment J(0) = 1, J(t) − J(t + 1) > 0 for 
1 ≤ t ≤ T − 1 and J(T + 1) = 0 (where T = 120 seconds).

Our characterization of the optimal search strategy is straightforward, and the 
proof is available in the online Appendix.

Theorem 1: For any time t, 1 ≤ t ≤ T, define the reservation utility level ​u​R​(t) as 
the unique solution to the equation,

(1)	​ ∫ 
​u​R​(t)

​ 
∞

 ​ [​ z  − ​ u​R​(t)] dF (z)  = ​   κ _ 
qJ(t) ​ .

�It is uniquely optimal to stop search and select the best prior object searched of 
utility ​​

_
 u ​​t−1​ if ​​

_
 u ​​t−1​ > ​u​R​(t), to continue search if ​​

_
 u ​​t−1​ < ​u​R​(t), with both strategies 

optimal if ​​
_
 u ​​t−1​ = ​u​R​(t).

In the standard choice environment, J(t) = 1 for all t. Theorem 1 implies that the 
optimal strategy is a fixed reservation level ​​

_
 u ​​R​ defined as the solution to the follow-

ing equation:

(2)	​ ∫ 
​​_ u ​​R​
​ 

∞

​ (​z  − ​​ _ u ​​R​ ) dF (z)  = ​  κ _ q ​ .

This reservation level is decreasing in the cost of search κ but is invariant to both the 
size of the choice set and the number of options that remain unsearched.

In the choice process environment, J(t) is decreasing. Theorem 1 therefore implies 
that the optimal strategy is defined by a declining reservation level that depends 
only on J(t), not the size of the choice set or the number of remaining alternatives. 
For any time t > 0, the reservation level in the choice process environment will be 
below the level in the equivalent standard choice environment. This result is intui-
tive: for any t > 0, the probability of further search affecting the outcome is higher 
in the standard choice environment than the choice process environment.

C. Stopping Rules in Experiments 1 and 2

The theoretical model suggests that, if anything, standard choice data should be 
better explained by the satisficing model than the choice process data. We begin by 
repeating the analysis of Section III to determine whether this is the case. We find 
that the standard choice experiments are indeed well explained by a fixed reserva-
tion rule. Figure 6 recreates the analysis of Figure 4 and suggests that a reservation 
stopping rule broadly describes the aggregate data. Table 4 shows that the estimated 
reservation levels for the standard choice data exhibit the same comparative stat-
ics as do those for the choice process data.23 Table 5 shows that the estimated HM 
indices for these reservation levels in the standard choice data are roughly similar 

23 For the analysis of Table 4 we drop subjects who never switch in any round and who are not classified as using 
a reservation strategy.
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for lower complexity and smaller for higher complexity.24 This suggests that there 
is little qualitative distinction between behavior in the standard choice and choice 
process environments.

The optimal stopping model suggests that there should be two differences between 
the standard choice data and the choice process data. First, reservation levels should 
be lower in the choice process environment than in the standard choice environment. 
Table 4 suggests that this is broadly so for the sample pursuing reservation strategies 
(HM index above 0.5). As Table 4 shows, the reservation utility is lower in experiment 

24 For none of the treatments is the difference between experiments 1 and 2 in terms of compliance with the 
reservation utility model significant at the 5 percent level.

Figure 6. Average Value by Selection (Experiment 1)
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1 than in experiment 2 in four of six treatments. This difference is significant in only 
two cases, and in both cases experiment 1 has the lower reservation level. Lower 
reservation levels could also explain why subjects in the choice process experiment 
finished searching more quickly than those in the standard choice environment.

While differing incentives could explain why final choice performance is worse 
in the choice process environment than in the standard choice environment, another 
possibility is more mundane—experiment 2 had a time limit, while experiment 1 did 
not. Experiment 4 allows us to determine which of these is the case, as it replicates 
the pure choice environment of experiment 1, but with a two minute time limit. The 
results suggest that the time limit is responsible for some, but not all, of the differ-
ence. The average failure rate across all treatments is 33.7 percent for the standard 
choice experiment, 39.5 percent in the standard choice with time limit experiment, 
and 43.6 percent in the choice process experiment.25 The difference in incentives 
does appear to impact performance in experiment 2 relative to that in experiment 1, 
over and above the effect of the time limit.

The theoretical model shows that, while a fixed reservation strategy is optimal 
in the standard choice data case, a declining reservation strategy is optimal in the 
choice process environment. We use a revealed preference approach to test for  
the possibility of a declining reservation level. The revealed preference implication 
of a declining reservation level is straightforward. If a subject stops searching and 
chooses an object x at time t but continues searching, having found object y at time 
s > t, it must be the case that x is preferred to y. This is because the value of x must 
be above the reservation value at time t, which is in turn above the reservation level 
at time s. Moreover, the value of y must be below the reservation level at time s as 

25 To calculate the average across all treatments, we calculate the average loss for each treatment and average 
across these.

Table 4—Estimated Reservation Levels 
(Experiment 1 and Experiment 2: reservation-based search types with a selection in every round.)

Complexity

Set size 3 7

10 Choice process 10.17 (0.22) 6.34 (0.13)
Standard choice 10.05 (0.50) 8.41 (0.20)

20 Choice process 11.22 (0.11) 8.92 (0.09)
Standard choice 11.73 (0.16) 8.39 (0.12)

40 Choice process 15.15 (0.10) 10.07 (0.09)
Standard choice 16.38 (0.13) 10.39 (0.12)

Note: Standard errors in parentheses.

Table 5—Aggregate HM Indices for Reservation-Based Search (Experiment 1)

Complexity

Set size 3 7

10 0.94 0.74
20 0.83 0.74
40 0.77 0.73
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search is continuing. Thus x must be preferred to y. In contrast, the revealed prefer-
ence implication of a fixed reservation level is that x is preferred to y if search stops 
with x at some time t but continues with y at some time s, regardless of the relation-
ship between t and s. Note that the fixed reservation model is a special case of the 
declining reservation model.

Armed with these observations, we can ask whether the declining reservation model 
helps to explain more of the choice process data than the fixed reservation model, 
by asking how many times the relevant revealed preference condition is violated. 
We classify data as violating a particular revealed preference condition if option x is 
revealed preferred to option y, but the value of y is greater than the value of x. It turns 
out that the declining reservation model does not offer a better description of choice 
process data. While the declining reservation model by definition has fewer violations 
in absolute terms, the proportion of observations that violate revealed preference is 
higher—24 percent for the fixed reservation model versus 32 percent for the declining 
reservation. Thus, our revealed preference approach finds little evidence that our sub-
jects are responding to the choice process environment by implementing a declining 
reservation strategy.

D. Comparing Behavior across Treatments

Assuming that search costs are higher for more complex objects, our model of 
optimal search implies that reservation utility should be lower in the higher complex-
ity environment. It implies also that optimal reservation levels are independent of 
the size of the choice set. The comparative statics properties of our experimentally 
estimated stopping rules do not align perfectly with those of the optimal stopping 
rule. While subjects reduce their reservation level in response to higher search costs, 
they also tend to increase their reservation level as the size of the choice set increases.

One possible reason for this discrepancy is that subjects may be searching “too 
much” in larger choice sets relative to smaller ones. This may relate to findings from 
the psychology and experimental economics literature that show that people may 
prefer smaller choice sets (Sheena Iyengar and Mark Lepper 2000; Maria Seuanez-
Salgado 2006).26 It is also possible that satisficing is followed as a rule of thumb, as 
Simon (1955) suggested. In the more everyday context with unknown object values, 
subjects may search more in larger sets in order to refine their understanding of what 
is available. They may then import this behavior into the experimental lab, despite 
being fully informed about the distribution of object values.

VI.  A Pure Random Error Model

Our explanation for subjects’ failure to pick the objectively best option is based 
on incomplete sequential search. However, another possibility is that these fail-
ures result from calculation errors—subjects search the entire choice set but make 
errors when evaluating each option. In order to test this alternative explanation, we 

26 One factor that potentially links these two findings is the concept of regret. Marcel Zeelenberg and Rik Pieters 
(2007) show that decision makers experience more regret in larger choice sets and suggest that this can lead them 
to search for more information.
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consider a simple model of complete search with calculation errors. We put a simple 
structure on the error process—subjects are modeled as if they see the true value of 
each object with an error that is drawn independently from an extreme value distri-
bution. The mode of this distribution is 0, and the scale factor on the error term is 
allowed to vary with complexity level and set size. With these assumptions, we can 
estimate the scale factor for each treatment using logistic regression. Specifically, 
we find the scale factor that best predicts the actual choice in each choice set.27 We 
allow for scale factors to differ between treatments.

Table 6 shows the estimated standard deviations from the calculation error model. 
This provides the first piece of evidence to suggest that the calculation error model is 
implausible. In large and complicated choice sets, the standard deviation needed to 
fit the data becomes very large—for example, in the size 40, complexity 3 treatment, 
the range between minus one and plus one standard deviation is around $7, while the 
mean value of our choice objects is just $4.

Despite these large standard deviations, the calculation error model significantly 
underpredicts both the frequency and the magnitude of our subjects’ losses, as shown 
in Table 7.28 The prediction of subject performance under the estimated calculation 
error model was based on 1,000 simulations of each observed choice set, in which a 
draw from the estimated distribution was added to the value of each option and the 
object of highest total value was identified as being chosen.

A final problem with the calculation error model is that it should lead to far more 
violations of sequential search than we in fact observe. Were subjects to be mak-
ing calculation errors of the magnitude required to explain final choices, we would 
expect to see them switch to worse objects more often than they do. We demon-
strate this in Figure 7. For this figure, the prediction of subject performance under 
the estimated calculation error model is based on simulations of choice process 
data assuming that values are observed with treatment-specific error.29 Note that the 

27 For example, if a value of 10 was chosen by a subject from {7, 10, 12}, then our estimation strategy would find 
the scale factor that gives the highest probability to choosing 10, given that all options are seen with their own error. 
With this approach, enough error must be applied so that the noisy signal of 10 appears larger than the noisy signal 
of 12, but not so much error that the noisy signal of 7 appears larger than the noisy signal of 10.

28 Alternatively, we could have estimated the scale factor to best match the failure rate and average loss found in 
the data, but this would ignore the actual choices that subjects made, which may contain other unpredicted patterns.

29 Simulated data was generated as follows. For each sequence of choice process data observed in experiment 2, 
we simulated 1,000 sequences of the same length. For each sequence, a draw from the value distribution (rounded to 
the nearest integer) was treated as the initial selection. The sum of this value and a draw from the treatment-specific 
error distribution was then compared to the sum of a second draw from the value distribution and a draw from the 
treatment-specific error distribution. If the latter sum was higher than the initial sum, then we assumed a switch 

Table 6—Estimated Standard Deviations (in dollars) for the  
Calculation Error Model (Experiment 1 and Experiment 2)

Complexity

Set size 3 7

10 Choice process 1.91 5.32
Standard choice 1.90 3.34

20 Choice process 2.85 5.23
Standard choice 2.48 4.75

40 Choice process 3.54 7.25
Standard choice 3.57 6.50
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predicted success rates for the calculation error model lie below the lower bounds of 
the 95 percent confidence interval bars for all treatments.

occurred, and the value of the second draw from the value distribution was carried forward as the current selection. 
Otherwise, we assumed that no switch occurred, and so the initial selection remained the current selection. Another 
draw from the value and error distributions was then made and compared to the current selection plus error. This 
process was then repeated until the number of simulated switches was equal to the length of actual switches in 
sequence taken from experiment 2. We then calculated the ratio of correct switches (where the true value of the new 
selection was higher than the true value of the current selection) to the total number of switches.

Table 7—Performance of Actual Choices and Simulated Choices Using the 
Calculation Error Model (Experiment 2)

Failure rate (percent)
Complexity

Set size 3 7

10 Actual choices 11.38 46.53
Simulated choices 8.35 32.47

20 Actual choices 26.03 58.72
Simulated choices 20.13 37.81

40 Actual choices 37.95 80.86
Simulated choices 25.26 44.39

Absolute loss (dollars)
Complexity

Set size 3 7

10 Actual choices 0.42 3.69
Simulated choices 0.19 1.86

20 Actual choices 1.62 4.51
Simulated choices 0.62 1.78

40 Actual choices 2.26 8.30
Simulated choices 0.75 2.48

Figure 7. Comparison of the Proportion of Switches to Larger Value for Actual Data and Simulated 
Data from Calculation Error Model (Experiment 2)
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VII.  Concluding Remarks

We introduce a choice-based experiment that bridges the gap between revealed 
preference theory and the theory of search. We use it to classify search behaviors in 
various decision-making contexts. Our central finding concerns the prevalence of 
satisficing behavior. Models of sequential search based on achievement of context 
dependent reservation utility closely describe our experimental data, suggesting the 
value of the search theoretic lens in systematizing our understanding of boundedly 
rational behavior.
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