Comparison of Decisions under Unknown Experiments

Andrew Caplin

New York University

Daniel Martin

Northwestern University

Abstract

We take the perspective of an econometrician who wants to determine which of two experiments provides higher expected utility but only knows the decisions under each experiment. To compare these decisions, the econometrician must make inferences about what the experiment might have been for each set of decisions. We provide a necessary and sufficient condition that identifies when every experiment consistent with one set of decisions has a higher value of information than every experiment consistent with the other set of decisions.

I. Introduction

There are many facts about the world (or "states of the world") that can be payoff relevant for decision makers (DMs). For example, their payoffs can depend on the fundamentals of a stock, the effectiveness of a vaccine, characteristics of a health plan, and so on. These facts can be presented to

[^0][^1]DMs in a number of different ways by better-informed parties. For instance, advisors, firms, news networks, and governments can choose to selectively allocate information about the facts, as in Bayesian persuasion (e.g., Kamenica and Gentzkow 2011) or voluntary information disclosure (e.g., Milgrom 1981). ${ }^{1}$ They can also choose the format that this information takes, making it easier or harder for DMs to understand. ${ }^{2}$ In both of these cases, it has been well documented that the way the better-informed party chooses to present the facts can strongly influence how well informed DMs are when they make their choices.

We take the perspective of an econometrician who wants to compare different ways of presenting the facts based on how valuable that information was for DMs. For example, the econometrician might want to determine whether the advice from one financial advisor helped DMs make better portfolio allocations than the advice provided by a different advisor, whether watching one news program helped DMs choose better health behaviors than watching another news program (e.g., Bursztyn et al. 2020), or whether one description of fees led to better health plan choices made than a different description of fees (e.g., Bhargava, Loewenstein, and Sydnor 2017).

We model a presentation of the facts as an experiment (a joint distribution of signals and states). Traditionally, experiments have been used to model physical activities where observing signals is easy (e.g., drilling for oil or performing a medical test). However, in our application it is more challenging for the econometrician to observe the experiment itself. For instance, it can be hard to know what an advisor said to their clients if there are privacy concerns, advice is proprietary, or it is challenging to codify the advice provided. Further, even if we know the exact information they provided to their clients, it might be challenging to know what the clients understood about the facts based on that information. Yet it is often possible for the econometrician to observe the actions taken under each experiment. For instance, many data sets contain the stocks that were bought, the vaccines that were taken, the health plans that were selected, and so on.

Because of this, we assume that the econometrician knows only the actions taken under each experiment and nothing about the experiment itself (either the signal structure or the signal realizations). For example, all the econometrician might know about a particular experiment is that

[^2]it results in the following joint distribution over actions (a_{1}, a_{2}, a_{3}) and states $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$:
\[

P_{g}=\left($$
\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\frac{22}{100} & 0 & 0 \\
0 & \frac{22}{100} & \frac{18}{100} \\
0 & \frac{18}{100} & \frac{22}{100}
\end{array}
$$\right) a_{a} .
\]

In practice, this joint distribution could be the frequency a stock is bought when it has certain fundamentals, a vaccine is taken when it has certain effectiveness, a preferred provider organization health plan is chosen when it has certain benefits, a television model is purchased when a competing model is on sale, a loan is made to someone who will default, a test is ordered for someone who actually has a disease, and so on. ${ }^{3}$

Thus, the econometrician wants to be able to determine which of two experiments provides higher expected utility for the DM based solely on the joint distributions of actions and states under each experiment. For example, does the experiment that produced P_{g} provide higher expected utility than the experiment that produced P_{h} ?

$$
P_{g}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\frac{22}{100} & 0 & 0 \\
0 & \frac{22}{100} & \frac{18}{100} \\
0 & \frac{18}{100} & \frac{22}{100}
\end{array}\right) a_{1} \quad a_{2} \quad \text { and } \quad P_{h}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\left(\begin{array}{ccc}
\frac{10}{100} & \frac{20}{100} & \frac{20}{100} \\
\frac{5}{100} & \frac{20}{100} & 0 \\
\frac{5}{100} & 0 & \frac{20}{100}
\end{array}\right) a_{1} . \\
a_{2} . \\
a_{3}
\end{array}\right.
$$

When the DM's utility function is known, answering this question is easy because the econometrician can directly calculate expected utility using the probability of each action and state. However, we are interested in whether the econometrician can rank experiments without knowing the DM's utility function.

To accomplish this, the econometrician must make inferences about what the experiment might have been for each set of decisions. We use the same maintained assumptions as Blackwell (1953): for a given u, experiment π_{g} is consistent with P_{g} if P_{g} maximizes expected utility among the joint distributions of actions and states feasible under experiment π_{g}.

[^3]Using the set of consistent experiments, we define a binary relation \succsim_{V} that enables the econometrician to rank decisions. We say that $P_{g} \succsim_{V} P_{h}$ if for every utility function u, every experiment consistent with P_{g} has a higher value of information than every experiment consistent with P_{h}.

To characterize the relation \succsim_{V}, we leverage two features of the problem. First, for a given utility function u, every experiment consistent with a given P_{g} has the same value of information, which is the expected utility provided by P_{g} for that utility function. Second, there are utility functions for which no experiments are consistent with P_{g} or P_{h}. Because the condition for $P_{g} \succsim_{V} P_{h}$ is trivially satisfied for such utility functions, the econometrician does not need to consider them when comparing P_{g} and P_{h}.

Thus, the econometrician can safely conclude that $P_{g} \succsim_{V} P_{h}$ if they can rule out enough utility functions to ensure that P_{g} provides higher expected utility than P_{h} for all remaining utility functions. We establish the general logic by first showing that restricting utility functions has a clean geometric structure in the space of outcome lotteries. We then build on this structure to produce a necessary and sufficient condition for $P_{g} \succsim_{V} P_{h}$. The necessity and sufficiency of this condition follows as a direct consequence of the separating hyperplane theorem. In technical terms, this condition requires that a vector representing the difference in outcomes between P_{g} and P_{h} falls in the cone generated by the restrictions for a utility function to be consistent with P_{g} and P_{h}. This corresponds to solving a system of linear equations, so it is simple to check, and MATLAB programs that implement it are provided. ${ }^{4}$

The rest of the paper is organized as follows. In section II, we provide our framework, formally define our relation, and show how having a second set of decisions or knowing outcomes can allow the econometrician to rule out enough utility functions for decisions to be ordered according to the relation. In section III, we first introduce our geometric representation of ruling out utility functions and then leverage this representation to identify a testable condition that is both necessary and sufficient for decisions to be ranked according to \succsim_{V}. Section IV concludes by discussing related literature.

II. Framework

For each presentation of the facts, we assume that the DM starts with an interior prior over a finite set of states Ω given by $\mu \in \Delta(\Omega)$. The DM receives a signal realization, and as is now standard, a signal realization is represented by the posterior belief $\gamma \in \Delta(\Omega)$ that it generates (see Kamenica and Gentzkow 2011). This process is summarized by an experiment π that is a joint distribution over states Ω and posteriors $\Delta(\Omega)$, and

[^4]for notational simplicity we assume that the experiment has finite support over $\Delta(\Omega)$.

Given a posterior belief generated by an experiment, we assume that the DM implements a decision rule $\sigma: \Delta(\Omega) \rightarrow \Delta(A)$, where A represents a finite set of actions. The DM receives outcome $x(a, \omega) \in X$ when action $a \in A$ is chosen in state $\omega \in \Omega$, and the decision rule maximizes expected utility based on a utility function $u: X \rightarrow \mathbb{R} .{ }^{5}$

We consider an econometrician who wants to compare the expected utility provided by two experiments (two presentations of the facts). We assume that the unconditional probability of states is the same across the experiments, and our interpretation of this assumption is that a presentation of the facts cannot change the facts themselves. For instance, a financial advisor cannot change the actual financial conditions of the institutions their clients might invest in. In the case of choosing which way to describe fees, the fees themselves cannot be changed. This assumption is not required for our characterization, but it simplifies our analysis.

All the econometrician knows about these experiments is the joint distributions over actions and states they generate. We refer to an arbitrary joint distribution of actions and states as $P_{f} \in\left\{P_{g}, P_{h}\right\}$ and denote $P_{f}(a, \omega)$ as the probability of choosing action a and being in state ω for $P_{f}{ }^{6}{ }^{6}$

As with other stochastic choices, each P_{g} and P_{h} can be interpreted as watching the DM face a decision infinitely often. In practice, one might estimate it from repeated but finite choice data or by looking at a population rather than an individual, as in the literature on discrete choice following McFadden (1973). For notational simplicity, we assume that all outcomes can be obtained by taking some action in some state and that for each distribution of actions and states, each action is chosen in some state and an action is chosen in each state. ${ }^{7}$ This joins a growing literature that considers stochastic choice to be essential for studying information and utility (e.g., Manzini and Mariotti 2014; Apesteguia and Ballester 2018).

For what follows, it is not necessary for the econometrician to also know the outcome received from taking each action in each state, as it is without loss of generality for the econometrician to arbitrarily assign a distinct outcome to every action in every state. However, the presence of an outcomes space allows us to accommodate cases where the econometrician

[^5]knows that utility is equal across some states and actions. For example, the econometrician might know that an action is "safe" because it yields the same outcome in every state (for an example, see sec. III.A).

A. Comparison of Decisions

The econometrician would like to compare joint distributions of actions and states P_{g} and P_{h} based on the value of the information provided by the experiments that generated them. Without knowing anything about the structure of these experiments, the econometrician must determine the experiments that are consistent with P_{g} and P_{h}.

We define consistency using the same maintained assumptions as in Blackwell (1953). An experiment π_{f} is consistent with P_{f} if P_{f} maximizes expected utility among distributions of actions and states feasible under π_{f}.

A joint distribution of actions and states P_{f} is feasible under π_{f} if there exists a decision rule $\sigma_{f}: \Delta(\Omega) \rightarrow \Delta(A)$ such that

$$
P_{f}(a, \omega)=\sum_{\gamma \in \operatorname{supp}\left(\pi_{f}\right)} \pi_{f}(\gamma, \omega) \sigma_{f}(a \mid \gamma),
$$

where the set of possible posterior beliefs is given by $\operatorname{supp}\left(\pi_{f}\right)$. Given u, the highest expected utility for experiment π_{f} is

$$
V\left(u, \pi_{f}\right)=\max _{P \in \Phi\left(\pi_{f}\right)} \sum_{a \in A} \sum_{\omega \in \Omega} P(a, \omega) u(x(a, \omega)),
$$

where $\Phi\left(\pi_{f}\right)$ represents the set of all distributions of actions and states feasible under π_{f}. The function $V\left(u, \pi_{f}\right)$ is also known as the value of information for experiment π_{f} given utility function $u .{ }^{8}$ Thus, P_{f} is consistent with π_{f} if

$$
P_{f} \in \underset{P \in \Phi\left(\pi_{f}\right)}{\operatorname{argmax}} \sum_{a \in A} \sum_{\omega \in \Omega} P(a, \omega) u(x(a, \omega)) .
$$

To allow the econometrician to rank distributions of actions and states based on the value of information for consistent experiments, we formally define the relation \succsim_{V} as

$$
P_{g} \succsim_{V} P_{h}
$$

if for every u,

$$
V\left(u, \pi_{g}\right) \geq V\left(u, \pi_{h}\right)
$$

for every π_{g} consistent with P_{g} and every π_{h} consistent with P_{h}.

[^6]There are two features of the problem that help us in characterizing this relation. First, for a given u, every experiment π_{f} consistent with P_{f} has the same value of information, which is the expected utility provided by P_{f} :

$$
V\left(u, \pi_{f}\right)=\sum_{\omega \in \Omega} \sum_{a \in A} P_{f}(a, \omega) u(x(a, \omega)) .
$$

Second, we need to consider only those utility functions for which there exist experiments consistent with P_{g} and P_{h}, as the condition for $P_{g} \succsim_{V} P_{h}$ is trivially satisfied for all other utility functions. Putting this together, $P_{g} \succsim_{V} P_{h}$ if and only if for all u for which there are experiments consistent with P_{g} and P_{h},

$$
\sum_{\omega \in \Omega} \sum_{a \in A} P_{g}(a, \omega) u(x(a, \omega)) \geq \sum_{\omega \in \Omega} \sum_{a \in A} P_{h}(a, \omega) u(x(a, \omega))
$$

B. Ruling Out Utility Functions

To operationalize this restatement of $P_{g} \succsim_{V} P_{h}$, the econometrician needs to identify those u for which there are experiments consistent with P_{g} and P_{h} or, equivalently, to rule out those u for which there does not exist an experiment consistent with P_{g} or P_{h}.

For utility function u, there does not exist an experiment consistent with $P_{f} \in\left\{P_{g}, P_{h}\right\}$ if it is possible to improve utility by making a wholesale switch from any chosen action to another action. If the DM can improve utility by switching to an action $b \in A$ at all posteriors where they chose action $a \in A$, this means that whatever decision rule pairs with an experiment to make P_{f} feasible cannot maximize expected utility.

This is demonstrated in the following simple example, where utility equal to one when action a_{3} is taken in state ω_{1}, action a_{2} is taken in state ω_{2}, and action a_{1} is taken in state ω_{3} :

$$
u=\left(\begin{array}{ccc}
\omega_{1} \omega_{2} \omega_{3} \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) a_{a_{1}}^{a_{2}} a_{3} \quad \text { and } \quad P_{f}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\frac{22}{100} & 0 & 0 \\
0 & \frac{22}{100} & \frac{18}{100} \\
0 & \frac{18}{100} & \frac{22}{100}
\end{array}\right) a_{2} .
$$

For this utility function, P_{f} is not consistent with any experiment because the DM can improve utility by making a wholesale switch to choosing a_{3} when a_{1} was chosen. When the DM chooses a_{1}, they get a utility of zero
for certain, but if they had chosen a_{3} instead, the DM could have gotten a utility of one for certain.

Caplin and Martin (2015) formalize this logic by introducing the no improving action switches (NIAS) condition, which is a system of linear inequalities ensuring it is better not to make a wholesale switch from any chosen action a to any other action b. Utility function u satisfies NIAS for P_{g} and P_{h} if

$$
\sum_{\omega \in \Omega} P_{f}(a, \omega) u(x(a, \omega)) \geq \sum_{\omega \in \Omega} P_{f}(a, \omega) u(x(b, \omega))
$$

for all $P_{f} \in\left\{P_{g}, P_{h}\right\}$ and $a, b \in A$. The NIAS inequality for choosing a over b in P_{f} indicates that choosing a instead of b is optimal on average at the choice probabilities where a is chosen in P_{f}, given the utility of the outcomes from choosing a instead of b.

As illustrated above, if a utility function u does not satisfy NIAS, then there does not exist an experiment consistent with $P_{f .}$ Caplin and Martin (2015) show that the reverse is true as well. If u satisfies NIAS, then there always exists an experiment consistent with P_{f} for that $u .{ }^{9}$ Thus, the set of all u satisfying NIAS for P_{g} and P_{h} is precisely the set of u the econometrician should consider when comparing P_{g} and P_{h}.

We establish here a general feature of NIAS that enhances its analytical and computational tractability. The following lemma indicates which NIAS inequalities must hold with equality and which must hold strictly. In other words, it states that for $P_{f} \in\left\{P_{g}, P_{h}\right\}$ the NIAS inequality for choosing a over b holds with equality if and only if the outcomes associated with that NIAS inequality (the additional probability of each outcome gained by not switching from a to b) can be expressed as a nonpositive combination of the outcomes associated with other NIAS inequalities.

Lemma 1. For every u that satisfies NIAS,

$$
\begin{equation*}
\sum_{\omega \in \Omega} P_{f}(a, \omega) u(x(a, \omega))=\sum_{\omega \in \Omega} P_{f}(a, \omega) u(x(b, \omega)) \tag{1}
\end{equation*}
$$

for $a, b \in A$ if and only if there exists a collection of N triples with generic element $\left(P_{n}, a_{n}, b_{n}\right)$ having $P_{n} \in\left\{P_{g}, P_{h}\right\}, a_{n} \in A, b_{n} \in A$, and $\left(P_{n}, a_{n}, b_{n}\right) \neq$ $\left(P_{f}, a, b\right)$ and nonpositive weights w_{1}, \ldots, w_{N} such that for every $x \in X$,

$$
\begin{align*}
& \sum_{\omega \in \Omega} P_{f}(a, \omega)\left(\mathbf{1}_{\{x(a, \omega)=x\}}-\mathbf{1}_{\{x(b, \omega)=x\}}\right) \\
& =\sum_{n=1}^{N} w_{n}\left(\sum_{\omega \in \Omega} P_{n}\left(a_{n}, \omega\right)\left(\mathbf{1}_{\left\{x\left(a_{n, \omega}, \omega\right)=x\right\}}-\mathbf{1}_{\left\{x\left(b_{n}, \omega\right)=x\right\}}\right)\right), \tag{2}
\end{align*}
$$

[^7]where $\mathbf{1}_{\{x(a, \omega)=x\}}$ is an indicator function that takes a value of one when the outcome from taking action a in state ω yields outcome x.

Proof. See the appendix. QED

C. Ruling Out Utility Functions to Rank Decisions

The following two examples demonstrate that NIAS can rule out enough utility functions to allow the value of information to be ranked between two distributions of actions and states.

1. Tracking Problems

We first consider "tracking" decision problems, in which the DM receives a state-specific outcome x_{k} if their action matches state ω_{k} and outcome x_{B} if they fail to match the action to the state. For this class of decision problems, the map $x(a, \omega)$ between actions, states, and outcomes is known by the econometrician and is given by

$$
x\left(a_{j}, \omega_{k}\right)=\left\{\begin{array}{l}
x_{k} j=k, \\
x_{B} j \neq k .
\end{array}\right.
$$

For the three-action and three-state version of this tracking problem, the map between actions, states, and outcomes can be represented as a matrix where actions $a_{1}-a_{3}$ are given in the rows and states $\omega_{1}-\omega_{3}$ are given in the columns:

$$
\begin{gathered}
\omega_{1} \omega_{2} \omega_{3} \\
\left(\begin{array}{ccc}
x_{1} & x_{B} & x_{B} \\
x_{B} & x_{2} & x_{B} \\
x_{B} & x_{B} & x_{3}
\end{array}\right) \begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array} .
\end{gathered}
$$

Imagine the following distribution of actions and states, which were given in the introduction:

$$
P_{g}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\frac{22}{100} & 0 & 0 \\
0 & \frac{22}{100} & \frac{18}{100} \\
0 & \frac{18}{100} & \frac{22}{100}
\end{array}\right) a_{1} \quad a_{2} \quad \text { and } \quad P_{h}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\left(\begin{array}{ccc}
\frac{10}{100} & \frac{20}{100} & \frac{20}{100} \\
\frac{5}{100} & \frac{22}{100} & 0 \\
\frac{5}{100} & 0 & \frac{20}{100}
\end{array}\right) a_{1} . \\
a_{2} . \\
a_{3}
\end{array}\right.
$$

In the analysis that follows, we show that these distributions of actions and states reveal that the outcomes from matching actions to states are
"good" and the outcome from not matching actions is "bad." Formally, this means that for all utility functions that rationalize P_{g} and $P_{h}, u\left(x_{k}\right) \geq$ $u\left(x_{B}\right)$ for all $k \in\{1,2,3\}$. Given this, P_{g} will be revealed to have a higher value of information because the DM matches actions to states more often in every state. In terms of signal structures, it is as if P_{g} is generated by a DM with a signal structure that is perfectly informative about whether the state is ω_{1} but is not as informative about the other states as the signal structure that generated P_{h}.

Without loss of generality we set $u\left(x_{B}\right)=0$, so we can compute the value of information for P_{g} as

$$
\frac{20}{100} u\left(x_{0}\right)+\frac{22}{100} u\left(x_{1}\right)+\frac{22}{100} u\left(x_{2}\right)
$$

and for P_{h} as

$$
\frac{10}{100} u\left(x_{0}\right)+\frac{20}{100} u\left(x_{1}\right)+\frac{20}{100} u\left(x_{2}\right) .
$$

Clearly, if $u\left(x_{1}\right), u\left(x_{2}\right)$, or $u\left(x_{3}\right)$ are revealed to be nonnegative for all rationalizing utility functions, then P_{g} is revealed to have a higher value of information.

The fact that these utilities are nonnegative can be established through the NIAS inequalities for P_{g}. The NIAS inequality for P_{g} for a_{1} chosen over action a_{2} gives $u\left(x_{1}\right) \geq 0$ because

$$
\begin{aligned}
\sum_{\omega \in \Omega} P_{f}\left(a_{1}, \omega\right) u\left(x\left(a_{1}, \omega\right)\right) & \geq \sum_{\omega \in \Omega} P_{f}\left(a_{1}, \omega\right) u\left(x\left(a_{2}, \omega\right)\right), \\
\frac{20}{100} u\left(x_{1}\right) & \geq \frac{20}{100} u\left(x_{B}\right)=0 .
\end{aligned}
$$

Likewise, the NIAS inequality for P_{g} for a_{2} chosen over action a_{1} gives $u\left(x_{2}\right) \geq 0$, and the NIAS inequality for a_{3} chosen over action a_{1} gives $u\left(x_{3}\right) \geq 0$.

2. Problems with Distinct Outcomes

Next, we consider a common class of decision problems in which every action yields a distinct outcome in every state, so that $x(a, \omega) \neq x(b, \nu)$ if $a \neq b$ or $\omega \neq \nu$. As noted previously, this case covers the situation where the econometrician does not know the map between actions, states, and outcomes.

For the three-action and three-state version of this tracking problem, the map between actions, states, and outcomes can be represented as a matrix where actions $a_{1}-a_{3}$ are given in the rows and states $\omega_{1}-\omega_{3}$ are given in the columns:

$$
\begin{gathered}
\omega_{1} \\
\omega_{2}
\end{gathered} \omega_{3} .\left\{\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \begin{aligned}
& a_{1} \\
& a_{2} \\
& a_{3}
\end{aligned}
$$

One example of this is given by

$$
P_{g}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\frac{24}{72} & 0 & 0 \\
0 & \frac{16}{72} & \frac{8}{72} \\
0 & \frac{8}{72} & \frac{16}{72}
\end{array}\right) a_{1} \quad \begin{aligned}
& a_{2} \\
& \text { and } \quad P_{h}
\end{aligned}=\left(\begin{array}{ccc}
\omega_{1} & \omega_{2} & \omega_{3} \\
\frac{12}{72} & \frac{6}{72} & \frac{6}{72} \\
\frac{6}{72} & \frac{5}{72} & \frac{13}{72} \\
\frac{6}{72} & \frac{13}{72} & \frac{5}{72}
\end{array}\right) a_{1} .
$$

Like the tracking example, these distributions of actions and states will reveal that the DM prefers the outcome obtained when choosing action a_{1} when the state is ω_{1}, prefers the outcomes obtained when choosing a_{2} and a_{3} in the other states, and is perfectly informed when taking action a_{1}. Once again, it is as if for P_{g} the DM gets a signal realization that is perfectly informative of whether the state is ω_{1} and so knows to take action a_{1} if the state is ω_{1} and not to choose action a_{1} otherwise.

However, unlike the tracking example, this P_{g} and P_{h} reveal that the utility obtained from taking actions a_{2} and a_{3} is the same in every state. ${ }^{10}$ This follows from the fact that the NIAS inequalities for a_{2} chosen over a_{3} and a_{3} chosen over a_{2} hold with equality for both P_{g} and P_{h}, which is a consequence of lemma 1 . Lemma 1 states that an NIAS inequality is equal to zero if and only if that NIAS inequality can be expressed as a nonpositive combination of other NIAS inequalities. For example, the NIAS inequality for a_{2} chosen over a_{3} for P_{g} is $(16 / 72)\left(u\left(a_{2}, \omega_{2}\right)-u\left(a_{3}, \omega_{2}\right)\right)+$ $(8 / 72)\left(u\left(a_{2}, \omega_{3}\right)-u\left(a_{3}, \omega_{3}\right)\right) \geq 0 .{ }^{11}$ The negative of this can be obtained by simply adding together the outcome lotteries from the NIAS inequalities for a_{3} chosen over a_{2} for P_{g}, for a_{2} chosen over a_{3} for P_{h}, and for a_{3} chosen over a_{2} for P_{h}.

Given that the NIAS inequalities for a_{2} chosen over a_{3} and a_{3} chosen over a_{2} hold with equality for P_{g}, the utility differences between a_{2} and a_{3} in ω_{2} and the utility differences between a_{2} and a_{3} in ω_{3} are both equal to zero because those NIAS inequalities say

[^8]$$
\frac{16}{72}\left(u\left(a_{2}, \omega_{2}\right)-u\left(a_{3}, \omega_{2}\right)\right)+\frac{8}{72}\left(u\left(a_{2}, \omega_{3}\right)-u\left(a_{3}, \omega_{3}\right)\right)=0
$$
and
$$
-\frac{8}{72}\left(u\left(a_{2}, \omega_{2}\right)-u\left(a_{3}, \omega_{2}\right)\right)-\frac{16}{72}\left(u\left(a_{2}, \omega_{3}\right)-u\left(a_{3}, \omega_{3}\right)\right)=0,
$$
which is possible only if $u\left(a_{2}, \omega_{2}\right)-u\left(a_{3}, \omega_{2}\right)=0$ and $u\left(a_{2}, \omega_{3}\right)-$ $u\left(a_{3}, \omega_{3}\right)=0$. Likewise, given that the NIAS inequalities for a_{2} chosen over a_{3} and a_{3} chosen over a_{2} hold with equality for P_{g}, the utility difference between a_{2} and a_{3} in ω_{1} is also equal to zero. Thus, the utility from taking a_{2} is the same as the utility from taking a_{3} in every state.

Given this, the value of information is higher for P_{g} if

$$
\begin{aligned}
& \frac{12}{72}\left(u\left(a_{1}, \omega_{1}\right)-u\left(a_{2}, \omega_{1}\right)\right) \\
& +\frac{6}{72}\left(u\left(a_{2}, \omega_{2}\right)-u\left(a_{1}, \omega_{2}\right)+u\left(a_{2}, \omega_{3}\right)-u\left(a_{1}, \omega_{3}\right)\right) \geq 0 .
\end{aligned}
$$

To show that this holds, we first note that $u\left(a_{1}, \omega_{1}\right) \geq u\left(a_{2}, \omega_{1}\right)$ (the DM preferring to take action a_{1} in state ω_{1}) follows directly from the NIAS inequality for a_{1} chosen over a_{2} for P_{g}. Second, because a_{2} and a_{3} give the same utility in every state, the NIAS inequalities for a_{2} chosen over a_{1} and a_{3} chosen over a_{1} for P_{g} yield

$$
\frac{16}{72}\left(u\left(a_{2}, \omega_{2}\right)-u\left(a_{1}, \omega_{2}\right)\right)+\frac{8}{72}\left(u\left(a_{2}, \omega_{3}\right)-u\left(a_{1}, \omega_{3}\right)\right) \geq 0
$$

and

$$
\frac{8}{72}\left(u\left(a_{2}, \omega_{2}\right)-u\left(a_{1}, \omega_{2}\right)\right)+\frac{16}{72}\left(u\left(a_{2}, \omega_{3}\right)-u\left(a_{1}, \omega_{3}\right)\right) \geq 0 .
$$

Adding these together gives

$$
u\left(a_{2}, \omega_{2}\right)-u\left(a_{1}, \omega_{2}\right)+u\left(a_{2}, \omega_{3}\right)-u\left(a_{1}, \omega_{3}\right) \geq 0 .
$$

With this, we have that P_{g} provides a higher value of information.

III. Characterizing the Relation

Is there a general approach to checking whether there are enough restrictions on u to ensure $P_{g} \succsim_{V} P_{h}$? We produce a necessary and sufficient condition for $P_{g} \succsim_{V} P_{h}$ by moving fully to the space of probabilities and probability differences over outcomes. There are three features that make this space important. First, it allows geometric representation of the NIAS inequalities. Second, it allows identification of all utility functions that
satisfy these inequalities. Third, it identifies all differences in outcome lotteries that are guaranteed to raise utility (which allows us to identify $\left.\succsim_{V}\right)$. Because of this geometric representation, we can reduce $P_{g} \succsim_{V} P_{h}$ to a single system of linear equations.

A. Ruling Out Utility Functions Geometrically

First, each NIAS inequality can be represented as an M-dimensional vector $\vec{d}_{f}(a, b)$ that gives the outcome lottery gained from not making a wholesale switch from action a to action b for P_{f}-in other words, the additional probability of receiving each outcome from not making this wholesale switch. Element m of this vector gives the additional probability of receiving outcome x_{m} in X from not making a wholesale switch from action a to action b for P_{g}, which is

$$
\sum_{\omega \in \Omega} P_{f}(a, \omega)\left(\mathbf{1}_{\left\{x(a, \omega)=x_{x}\right\}}-\mathbf{1}_{\left\{x(b, \omega)=x_{n}\right\}}\right),
$$

where $\mathbf{1}_{\left\{x(a, \omega)=x_{m}\right\}}$ is an indicator function that takes a value of one when the outcome from taking action a in state ω yields outcome x_{m}. The convex cone D formed by all NIAS inequalities is

$$
D=\left\{\alpha_{1} \vec{d}_{f i}\left(a_{1}, b_{1}\right)+\cdots+\alpha_{N} \vec{d}_{f_{N}}\left(a_{N}, b_{N}\right) \mid \alpha_{n} \in \mathbb{R}_{+}, f_{n} \in\{g, h\}, a_{n}, b_{n} \in A\right\} .
$$

A utility function can be represented as an M-dimensional vector \vec{u}, where element m gives the utility of outcome x_{m}. A utility vector \vec{u} satisfies NIAS if $\vec{d} \bullet \vec{u} \geq 0$ for every vector $\vec{d} \in D$. We call the convex cone formed by all \vec{u} that satisfy NIAS the NIAS utility cone.
We illustrate this with a simple decision problem that has a safe action, where the map between states, actions, and outcomes is given by

$$
\begin{gathered}
\omega_{1} \omega_{2} \\
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{3}
\end{array}\right) \begin{array}{l}
a \\
b
\end{array} .
\end{gathered}
$$

Imagine the following distribution of actions and states:

$$
P_{g}=\left(\begin{array}{cc}
\omega_{1} & \omega_{2} \\
0.4 & 0.1 \\
0.1 & 0.4
\end{array}\right) \begin{gathered}
a \\
b
\end{gathered} \quad \text { and } \quad P_{h}=\left(\begin{array}{cc}
\omega_{1} & \omega_{2} \\
0.15 & 0.05 \\
0.35 & 0.45
\end{array}\right) a .
$$

Choosing a in P_{g} gets x_{1} and x_{2} with unconditional probabilities 0.4 and 0.1 . Choosing b gets x_{3}. Hence, sticking with a over b yields

$$
\vec{d}_{g}(a, b)=(0.4,0.1,-0.5)
$$

Likewise, sticking with b over a in P_{g} gets x_{3} rather than x_{1} with unconditional probability 0.1 and x_{2} with unconditional probability 0.4 :

$$
\vec{d}_{g}(b, a)=(-0.1,-0.4,0.5)
$$

Analogously,

$$
\begin{aligned}
& \vec{d}_{h}(a, b)=(0.15,0.05,-0.2), \\
& \vec{d}_{h}(b, a)=(-0.35,-0.45,0.8)
\end{aligned}
$$

NIAS identifies rationalizing utility functions as all that have (weakly) positive dot products with all of these vectors. This can be visualized in two dimensions by normalizing $u\left(x_{3}\right)=0$. With this normalization, the (x_{1}, x_{2}) space can illustrate both D and the NIAS utility cone, which is given in figure 1 .

B. Ranking Decisions Geometrically

Let $\vec{d}(g, h)$ be an M-dimensional vector that gives the outcome lottery gained from encountering P_{g} instead of P_{h}-in other words, the additional probability of receiving each outcome from P_{g}. For outcome x_{m} in X, this is

$$
\sum_{a \in A} \sum_{\omega \in \Omega}\left(P_{g}(a, \omega)-P_{h}(a, \omega)\right) \mathbf{1}_{\{x(a, \omega)=x\}} .
$$

Fig. 1.-Illustration of the geometric structure of ruling out utility functions using NIAS.

The joint distribution P_{g} being revealed to have a higher value of information $\left(P_{g} \succsim_{V} P_{h}\right)$ is equivalent to $\vec{d}(g, h) \bullet \vec{u} \geq 0$ for all \vec{u} in the NIAS utility cone. Thus, $P_{g} \succsim_{V} P_{h}$ if and only if the vector $\vec{d}(g, h)$ is in D because a vector is in D if and only if it has a nonnegative dot product with all \vec{u} in the NIAS utility cone.

Finally, because $\vec{d}(g, h)$ is in D if and only if it is a nonnegative weighted average of vectors in D, a necessary and sufficient condition for $P_{g} \succsim_{V} P_{h}$ corresponds to the outcome lottery gained from P_{g} being a nonnegative weighted average of the outcome lotteries gained from not making wholesale switches from any action for either P_{f} or P_{g}.

Returning to the example, P_{g} yields ($0.4,0.1,0.5$), and P_{h} yields (0.15 , $0.05,0.8)$. Hence, $\vec{d}(g, h)=(0.25,0.05,-0.3)$. As illustrated in figure 2 , $\vec{d}(g, h)$ is in D, so it has a positive dot product with the entire NIAS utility cone, so P_{g} and P_{h} are ranked by \succsim_{v}.

C. General Condition for Ranking Decisions

The condition that $\vec{d}(g, h)$ is in D, which we call decision improvement without action switches (DISI) for P_{g} over P_{h}, is defined for a weighting function $t_{g h}: A \times A \rightarrow \mathbb{R}_{+}$, which provides these nonnegative weights.

Condition 1 (DISI). Weighting function $t_{g h}: A \times A \rightarrow \mathbb{R}_{+}$satisfies DIAS for P_{g} over P_{h} if for every $x \in X$,

Fig. 2.-Illustration of the geometric structure of ranking decisions.

$$
\begin{aligned}
& \sum_{P_{f} \in\left\{P_{k}, P_{h}\right\}} \sum_{a \in A} \sum_{b \in A} \sum_{\omega \in \Omega} P_{f}(a, \omega)\left(\mathbf{1}_{\{x(a, \omega)=x\}}-\mathbf{1}_{\{x(b, \omega)=x\}}\right) t_{g h}(a, b) \\
= & \sum_{a \in A} \sum_{\omega \in \Omega}\left(P_{g}(a, \omega)-P_{h}(a, \omega)\right) \mathbf{1}_{\{x(a, \omega)=x\}} .
\end{aligned}
$$

The following theorem formally shows that DISI provides a necessary and sufficient condition to reveal that every experiment consistent with one distribution of actions and states has a higher value of information than every experiment consistent with one distribution of actions and states. After restating NIAS and DISI in terms of matrix multiplication, the proof of this theorem follows as a direct consequence of Farkas's lemma (Farkas 1902).

Theorem 1. $\quad P_{g} \succsim_{V} P_{h}$ if and only if there exists a weighting function $t_{g h}$ that satisfies DISI for P_{g} over P_{h}.

Proof. See the appendix. QED
This theorem has an economic interpretation in terms of preferences over outcome lotteries. DISI states that the difference in the outcome lotteries offered by the distributions of actions and states can be represented as the difference in two compound lotteries: one composed of the outcome lotteries from taking each action a for P_{g} and the other composed of outcome lotteries from taking each action b with the same probability as a. These compound lotteries have the same weights for all $P_{f} \in\left\{P_{g}, P_{h}\right\}$ and $a, b \in A$, which are given by a normalized version of $t_{g h}$. Because NIAS is satisfied, there exists a preference relation over lotteries such that every element of one compound lottery is weakly preferred to every element in the other compound lottery. Since all elements of the two compound lotteries are preference ordered, the compound lotteries are also preference ordered, which means that the outcome lotteries given by each distribution of actions and states are as well.

As noted previously, this theorem applies even when the econometrician does not know the outcomes to taking actions in each state. In this case, the econometrician can arbitrarily assign a distinct outcome to every action in every state. If DISI is satisfied given the unrestricted outcome mapping, then $P_{g} \succsim_{V} P_{h}$ also holds for all other outcome mappings that are consistent with at least one utility function that satisfies NIAS.

D. Testability

Determining whether there exists a t_{f} that satisfies DISI corresponds to determining whether there is a solution to a system of linear equations, so it is simple to check whether distributions of actions and states are welfare ranked. We provide MATLAB computer programs that determine whether a solution to this linear system exists for a given set of data. ${ }^{12}$

[^9]Also, there are settings where some options are clearly dominant, and NIAS and DISI can be easily amended to account for these additional restrictions. Say, for example, that outcome x_{1} clearly dominates outcome x_{2}. This restriction on utility can be incorporated into NIAS by generating an additional linear inequality given by

$$
\sum_{x \in X}\left(\mathbf{1}_{x=x_{1}}-\mathbf{1}_{x=x_{2}}\right) u(x) \geq 0 .
$$

Clearly, this restriction on the set of admissible utility functions can only reduce the set of u that satisfy NIAS.

Although DISI is not expressed in terms of utility, the dominance of outcome x_{1} over outcome x_{2} can be incorporated into DISI for P_{g} by requiring that, in addition to the weighting function $t_{g h}$, there exists a nonnegative t that solves

$$
\begin{aligned}
& \sum_{P_{f} \in\left\{P_{k}, P_{h}\right\}} \sum_{a \in A} \sum_{b \in A} \sum_{\omega \in \Omega} P_{f}(a, \omega)\left(\mathbf{1}_{\{x(a, \omega)=x\}}-\mathbf{1}_{\{x(b, \omega)=x\}}\right) t_{g h}(a, b) \\
+ & \left(\mathbf{1}_{x=x_{1}}-\mathbf{1}_{x=x_{2}}\right) t \\
= & \sum_{a \in A} \sum_{\omega \in \Omega}\left(P_{g}(a, \omega)-P_{h}(a, \omega)\right) \mathbf{1}_{\{x(a, \omega)=x\}}
\end{aligned}
$$

for every $x \in X$. If t is equal to zero, this reduces to the requirement for DISI, so this addition can only increase the proportion of P_{g} and P_{h} where there exists a weighting function $t_{g h}$ that satisfies DISI. Sensibly, knowledge about dominance improves our ability to rank decisions according to their welfare.

IV. Related Literature

Our work is most closely related to three other papers. First, our relation draws natural parallels to the seminal informativeness relation provided by Blackwell (1953). In comparing experiments, Blackwell holds fixed π_{g} and π_{h} and for each u evaluates the expected utility provided by all P_{g} and P_{h} consistent with those experiments. On the other hand, in comparing decisions, we hold fixed P_{g} and P_{h} and for each u evaluate the expected utility provided by all π_{g} and π_{h} consistent with those decisions. This change in perspective produces an important technical difference that is illustrated in the preceding sections. For Blackwell's relation, every u must be considered because every experiment π_{g} has a consistent P_{g} for every u. However, every u does not need to be considered for our relation because P_{g} may not have a consistent π_{g} for some u.

Second, like our paper, Lu (2016) also orders unknown experiments, but his characterization requires much more than simply the joint distribution of actions and states P_{g} and P_{h}. He also requires that the econometrician
observes richer "test functions" F_{g} and F_{h}, which are not naturally occurring. A test function F indicates how often the actions are chosen when the set of actions is paired with every possible mixture between the best and worst action.

Third, our paper builds on the results of Caplin and Martin (2015) and the NIAS condition they introduce. As a result, our paper is also related to the work of Bergemann and Morris (2016), as their obedience condition is identical to the NIAS condition in a single-player setting with no initial signals. However, an important distinction is that Bergemann and Morris (2016) take the utility function as known and use the obedience condition to determine the set of joint distribution of actions and states that are consistent with Bayes correlated equilibrium, whereas Caplin and Martin (2015) use NIAS to determine the set of utility functions that are consistent with a joint distribution of actions and states.

We provide three innovations relative to Caplin and Martin (2015). First, we provide a novel geometric representation for using NIAS to identify consistent utility functions. Second, we provide a new result showing when NIAS holds strictly and weakly, which enhances the analytical and computational tractability of NIAS. Third, and most importantly, we provide an entirely new application of NIAS by showing exactly when it can rule out enough utility functions to allow the value of information to be ranked between two unknown experiments.

Appendix

A1. Proof of Lemma 1

First, for any u that satisfies NIAS, by definition

$$
\begin{equation*}
\sum_{x \in X}\left(\sum_{\omega \in \Omega} P_{f}(a, \omega)\left(\mathbf{1}_{\{x(a, \omega)=x\}}-\mathbf{1}_{\{x(\omega, \omega)=x\}}\right) u(x) \geq 0\right. \tag{A1}
\end{equation*}
$$

for any triple $\left(P_{n}, a_{n}, b_{n}\right)$, where $P_{n} \in\left\{P_{f}, P_{g}\right\}, a_{n} \in A$, and $b_{n} \in A$. Thus, for any u that satisfies NIAS,

$$
-1 \times \sum_{x \in X}\left(\sum_{n=1}^{N} w_{n}\left(\sum_{\omega \in \Omega} P_{n}\left(a_{n}, \omega\right)\left(\mathbf{1}_{\left\{x\left(a_{n}, \omega\right)=x\right\}}-\mathbf{1}_{\left\{x\left(b_{n}, \omega\right)=x\right\}}\right)\right) u(x) \geq 0\right.
$$

for any collection of triples $\left(P_{n}, a_{n}, b_{n}\right)$, where $P_{1}, \ldots, P_{N} \in\left\{P_{f}, P_{g}\right\}, a_{1}, \ldots, a_{N} \in A$, and $b_{1}, \ldots, b_{N} \in A$ with $\left(P_{n}, a_{n}, b_{n}\right) \neq\left(P_{f}, a, b\right)$ and nonpositive weights w_{1}, \ldots, w_{N}. Assuming that equation (2) holds, this implies that for any u that satisfies NIAS,

$$
-1 \times \sum_{x \in X}\left(\sum_{\omega \in \mathbb{R}} P_{f}(a, \omega)\left(\mathbf{1}_{\{x(a, \omega)=x\}}-\mathbf{1}_{\{x(t, \omega)=x\}}\right) u(x) \geq 0 .\right.
$$

Because of equation (A1), this must equal zero, so equation (1) must hold.

Second, if equation (1) holds, then for all u that satisfy NIAS, it cannot be that

$$
\begin{equation*}
-1 \times \sum_{x \in X}\left(\sum_{\omega \in \Omega} P_{f}(a, \omega)\left(\mathbf{1}_{\{x(a, \omega)=x\}}-\mathbf{1}_{\{x(t, \omega)=x\}}\right) u(x)<0 .\right. \tag{A2}
\end{equation*}
$$

By Farkas's lemma, equations (A1) and (A2) mean that there must exist nonpositive weights on that collection of NIAS inequalities that give equation (2), completing the proof. QED

A2. Proof of Theorem 1

The NIAS inequality for $P_{f} \in\left\{P_{g}, P_{h}\right\}$ and actions $a, b \in A$ can be expressed as a $1 \times$ M-row vector $\vec{d}_{f}(a, b)$, where element m of this vector gives the difference in the probability of receiving outcome x_{m} from taking action a and from taking action b with the same probability. This is given by

$$
\sum_{\omega \in \Omega} P_{h}(a, \omega)\left(\mathbf{1}_{\left.\{x(a, \omega))=x_{x}\right\}}-\mathbf{1}_{\left\{x(b, \omega)=x_{k}\right\}}\right),
$$

where $\mathbf{1}_{\left\{x(a, \omega)=x_{x}\right\}}$ is an indicator function that takes a value of one when the outcome from taking action a in state ω yields outcome x_{m}.

Stacking the row vectors for all NIAS inequalities for $P_{f} \in\left\{P_{g}, P_{h}\right\}$ produces a $J^{2} \times M$ matrix D_{h}, where

$$
D_{h}=\left[\begin{array}{c}
\vec{d}_{h}\left(a_{1}, a_{1}\right) \\
\vec{d}_{h}\left(a_{1}, a_{2}\right) \\
\ldots \\
\vec{d}_{h}\left(a_{J}, a_{J-1}\right) \\
\vec{d}_{h}\left(a_{J}, a_{J}\right)
\end{array}\right],
$$

and stacking the matrix of NIAS inequalities for both distributions of actions and states produces a $2 \times J^{2} \times M$ matrix D, where

$$
D=\left[\begin{array}{l}
D_{f} \\
D_{g}
\end{array}\right]
$$

Based on this matrix D, NIAS can be restated as the $M \times 1$-column vector $u \in \mathbb{R}^{M}$ satisfying $D u \geq 0$, with $D u(m)>0$ for some $m \in\{1, \ldots, M\}$.

In addition, the requirement for P_{g} to be revealed to have a higher value of information than P_{h} can be expressed as a $1 \times M$-row vector \vec{d}, where element m gives the expected gain in outcome x_{m} from choosing with P_{g} instead of P_{b}, which is given by

$$
\sum_{a \in A} \sum_{\omega \in \Omega}\left(P_{f}(a, \omega)-P_{g}(a, \omega)\right) \mathbf{1}_{\left\{x(a, \omega)=x_{\}}\right\}} .
$$

Here $P_{g} \succsim_{V} P_{h}$ can be restated as $\vec{d} u \geq 0$ for all $u \in \mathbb{R}^{M}$ that satisfy NIAS. With this notation, both directions of the theorem follow from Farkas's lemma.

1. There exists $t \in \mathbb{R}_{+}^{2 \times l^{2}}$ s.t. $D^{T} t=(\vec{d})^{T} \Rightarrow$. For all $u \in \mathbb{R}^{M}$ satisfying NIAS, $\vec{d} u \geq 0$. Assume not. Take $u \in \mathbb{R}^{M}$ such that NIAS is satisfied, so that $D u \geq 0$, but $\vec{d} u<0$. By Farkas's lemma, there cannot exist a $t \in \mathbb{R}_{+}^{2 \times J^{2}}$ s.t. $D^{T} t=(\vec{d})^{T}$, which is a contradiction.
2. For all $u \in \mathbb{R}^{M}$ satisfying NIAS, $\vec{d} u \geq 0 \Rightarrow$. There exists $t \in \mathbb{R}_{+}^{2 \times]^{2}}$ s.t. $D^{T} t=(\vec{d})^{T}$. Assume there does not exist $t \in \mathbb{R}_{++}^{2 \times J^{2}}$ such that $D^{T} t=(\vec{d})^{T}$. By Farkas's lemma, there must exist a $u \in \mathbb{R}^{M}$ satisfying NIAS and with $\vec{d} u<0$, which is a contradiction. QED

References

Abeler, Johannes, and Simon Jäger. 2015. "Complex Tax Incentives." American Econ. J.: Econ. Policy 7 (3): 1-28.
Apesteguia, Jose, and Miguel A. Ballester. 2018. "Monotone Stochastic Choice Models: The Case of Risk and Time Preferences." J.P.E. 126 (1): 74-106.
Bergemann, Dirk, and Stephen Morris. 2016. "Bayes Correlated Equilibrium and the Comparison of Information Structures in Games." Theoretical Econ. 11 (2): 487-522.
Bhargava, Saurabh, George Loewenstein, and Justin Sydnor. 2017. "Choose to Lose: Health Plan Choices from a Menu with Dominated Option." Q.J.E. 132 (3): 131972.

Blackwell, David. 1953. "Equivalent Comparisons of Experiments." Ann. Math. Statis. 24 (2): 265-72.
Bursztyn, Leonardo, Aakaash Rao, Christopher Roth, and David YanagizawaDrott. 2020. "Misinformation during a Pandemic." Working Paper no. 202044, Becker Friedman Inst. Econ., Univ. Chicago.
Caplin, Andrew, and Daniel Martin. 2015. "A Testable Theory of Imperfect Perception." Econ. J. 125 (582): 184-202.
Carpenter, Jeffrey, Emiliano Huet-Vaughn, Peter Hans Matthews, Andrea Robbett, Dustin Beckett, and Julian Jamison. 2021. "Choice Architecture to Improve Financial Decision Making." Rev. Econ. and Statis. 103 (1): 102-18.
Carrera, Mariana, and Sofia Villas-Boas. 2015. "Generic Aversion and Observational Learning in the Over-the-Counter Drug Market." Working paper, Dept. Agricultural and Resource Econ., Univ. California, Berkeley.
Choi, James J., David Laibson, and Brigitte C. Madrian. 2009. "Reducing the Complexity Costs of 401 (k) Participation through Quick Enrollment." In Developments in the Economics of Aging, edited by David A. Wise, 57-82. Chicago: Univ. Chicago Press (for NBER).
Clippel, Geoffroy de, and Kareen Rozen. 2020. "Communication, Perception, and Strategic Obfuscation." Working paper, Dept. Econ., Brown Univ., Providence, RI.
Dranove, David, and Ginger Zhe Jin. 2010. "Quality Disclosure and Certification: Theory and Practice." J. Econ. Literature 48 (4): 935-63.
Ericson, Keith M. Marzilli, and Amanda Starc. 2016. "How Product Standardization Affects Choice: Evidence from the Massachusetts Health Insurance Exchange." J. Health Econ. 50:71-85.
Esponda, Ignacio, and Emanuel Vespa. 2019. "Contingent Preferences and the Sure-Thing Principle: Revisiting Classic Anomalies in the Laboratory." Working paper, Dept. Econ., Univ. California, Santa Barbara.

Farkas, Julius. 1902. "Uber die Theorie der Einfachen Ungeichungen." J. Reine Angewandte Math. 124:1-24.
Frankel, Alexander, and Emir Kamenica. 2018. "Quantifying Information and Uncertainty." A.E.R. 109 (10): 3650-80.
Hastings, Justine S., and Lydia Tejeda-Ashton. 2008. "Financial Literacy, Information, and Demand Elasticity: Survey and Experimental Evidence from Mexico." Working Paper no. 14538, NBER, Cambridge, MA.
Jin, Ginger Zhe, Michael Luca, and Daniel Martin. 2015. "Is No News (Perceived as) Bad News? An Experimental Investigation of Information Disclosure." Working Paper no. 21099, NBER, Cambridge, MA.
_. 2018. "Complex Disclosure." Working Paper no. 24675, NBER, Cambridge, MA.
Kamenica, Emir. 2019. "Bayesian Persuasion and Information Design." Ann. Rev. Econ. 11:249-72.
Kamenica, Emir, and Matthew Gentzkow. 2011. "Bayesian Persuasion." A.E.R. 101 (6): 2590-615.
Lara, Michel De, and Olivier Gossner. 2020. "Payoffs-Beliefs Duality and the Value of Information." SIAM J. Optimization 30 (1): 464-89.
Lu, Jay. 2016. "Random Choice and Private Information." Econometrica 84 (6): 1983-2027.
Manzini, Paola, and Marco Mariotti. 2014. "Stochastic Choice and Consideration Sets." Econometrica 82 (3): 1153-76.
McFadden, Daniel. 1973. "Conditional Logit Analysis of Qualitative Choice Behavior." In Frontiers in Econometrics, edited by Paul Zarembka, 105-42. New York: Academic Press.
Milgrom, Paul R. 1981. "Good News and Bad News: Representation Theorems and Applications." Bell J. Econ. 12 (2): 380-91.

[^0]: We thank Edwin Muñoz Rodriguez for excellent research assistance and Jose Apesteguia, Victor Aguiar, Miguel Ballester, Henrique de Oliveira, Alex Frankel, Ben Handel, Emir Kamenica, Matt Kovach, Josh Schwartzstein, Charlie Sprenger, Bruno Strulovici, Dmitry Taubinsky, Gerelt Tserenjigmid, and seminar audiences at Alicante, Chicago, Northwestern, and University of California, Santa Barbara, for valuable feedback. Caplin thanks the NOMIS and Sloan Foundations for support. All mistakes are our own. This paper was edited by Emir Kamenica.

[^1]: Electronically published August 31, 2021
 Journal of Political Economy, volume 129, number 11, November 2021.
 © 2021 The University of Chicago. All rights reserved. Published by The University of Chicago Press
 https://doi.org/10.1086/716104

[^2]: ${ }^{1}$ For reviews of the Bayesian persuasion literature, see Kamenica (2019); for reviews of the voluntary disclosure literature, see Dranove and Jin (2010); and for reviews of the disclosure experimental literature, see Jin, Luca, and Martin (2015).
 ${ }^{2}$ For example, see Hastings and Tejeda-Ashton (2008), Choi, Laibson, and Madrian (2009), Abeler and Jäger (2015), Carrera and Villas-Boas (2015), Ericson and Starc (2016), Jin, Luca, and Martin (2018), Esponda and Vespa (2019), Clippel and Rozen (2020), and Carpenter et al. (2021).

[^3]: ${ }^{3}$ In all of these cases, the state impacts utility, the DM may not be fully informed about the state, and the econometrician knows the state.

[^4]: ${ }^{4}$ Programs are available at https://github.com/danieljosephmartin.

[^5]: ${ }^{5}$ The outcome space is also finite, and we denote its cardinality as M. It has generic element x or x_{m}.
 ${ }^{6}$ The joint distributions P_{g} and P_{h} are state-dependent stochastic choice data, which were proposed for information-theoretic revealed preferences by Caplin and Martin (2015).
 ${ }^{7}$ Our results would still go through without these assumptions, but doing so would require carefully specifying the support of each distribution of actions and states and adding technical regularity conditions, which would necessitate several pieces of additional notation while adding little additional economic insight.

[^6]: ${ }^{8}$ An alternative way to define the value of information is as the improvement over the utility from taking actions at prior beliefs (see Frankel and Kamenica 2018; Lara and Gossner 2020). Since the prior is fixed across experiments in our framework, this definition would provide the same relative welfare assessments.

[^7]: ${ }^{9}$ For instance, if u satisfies NIAS, then the revealed experiment for P_{f} is consistent with P_{f} for that u.

[^8]: ${ }^{10}$ This example can also be generalized to any version of this problem with arbitrarily many actions and at least as many states as actions.
 ${ }^{11}$ Given that there are no common outcomes across states and actions in this decision problem, we will shorten $u(x(a, \omega))$ to $u(a, \omega)$.

[^9]: ${ }^{12}$ Programs are available at https://github.com/danieljosephmartin.

