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We take the perspective of an econometrician who wants to determine
which of two experiments provides higher expected utility but only
knows the decisions under each experiment. To compare these deci-
sions, the econometrician must make inferences about what the ex-
periment might have been for each set of decisions. We provide a nec-
essary and sufficient condition that identifies when every experiment
consistent with one set of decisions has a higher value of information
than every experiment consistent with the other set of decisions.
I. Introduction
There are many facts about the world (or “states of the world”) that can
be payoff relevant for decision makers (DMs). For example, their payoffs
can depend on the fundamentals of a stock, the effectiveness of a vaccine,
characteristics of a health plan, and so on. These facts can be presented to
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DMs in a number of different ways by better-informed parties. For in-
stance, advisors, firms, news networks, and governments can choose to se-
lectively allocate information about the facts, as in Bayesian persuasion
(e.g., Kamenica andGentzkow 2011) or voluntary information disclosure
(e.g., Milgrom 1981).1 They can also choose the format that this informa-
tion takes, making it easier or harder for DMs to understand.2 In both of
these cases, it has beenwell documented that the way the better-informed
party chooses to present the facts can strongly influence how well in-
formed DMs are when they make their choices.
We take the perspective of an econometrician who wants to compare

different ways of presenting the facts based on how valuable that informa-
tion was for DMs. For example, the econometrician might want to deter-
mine whether the advice from one financial advisor helped DMs make
better portfolio allocations than the advice provided by a different advi-
sor, whether watching onenews programhelpedDMs choose betterhealth
behaviors thanwatching another news program(e.g., Bursztyn et al. 2020),
or whether one description of fees led to better health plan choicesmade
than a different description of fees (e.g., Bhargava, Loewenstein, and Syd-
nor 2017).
We model a presentation of the facts as an experiment (a joint distribu-

tion of signals and states). Traditionally, experiments have been used to
model physical activities where observing signals is easy (e.g., drilling for
oil or performing a medical test). However, in our application it is more
challenging for the econometrician to observe the experiment itself. For
instance, it can be hard to know what an advisor said to their clients if
there are privacy concerns, advice is proprietary, or it is challenging to
codify the advice provided. Further, even if we know the exact informa-
tion they provided to their clients, it might be challenging to know what
the clients understood about the facts based on that information. Yet it is
often possible for the econometrician to observe the actions taken under
each experiment. For instance, many data sets contain the stocks that
were bought, the vaccines that were taken, the health plans that were se-
lected, and so on.
Because of this, we assume that the econometrician knows only the ac-

tions taken under each experiment and nothing about the experiment
itself (either the signal structure or the signal realizations). For example,
all the econometrician might know about a particular experiment is that
1 For reviews of the Bayesian persuasion literature, see Kamenica (2019); for reviews of
the voluntary disclosure literature, see Dranove and Jin (2010); and for reviews of the dis-
closure experimental literature, see Jin, Luca, and Martin (2015).

2 For example, see Hastings and Tejeda-Ashton (2008), Choi, Laibson, and Madrian
(2009), Abeler and Jäger (2015), Carrera and Villas-Boas (2015), Ericson and Starc (2016),
Jin, Luca, and Martin (2018), Esponda and Vespa (2019), Clippel and Rozen (2020), and
Carpenter et al. (2021).
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it results in the following joint distribution over actions (a1, a 2, a 3) and
states (q1, q2, q3):
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In practice, this joint distribution could be the frequency a stock is bought
when it has certain fundamentals, a vaccine is taken when it has certain
effectiveness, a preferred provider organization health plan is chosen when
it has certain benefits, a television model is purchased when a competing
model is on sale, a loan is made to someone who will default, a test is or-
dered for someone who actually has a disease, and so on.3

Thus, the econometrician wants to be able to determine which of two
experiments provides higher expected utility for the DM based solely on
the joint distributions of actions and states under each experiment. For
example, does the experiment that produced Pg provide higher expected
utility than the experiment that produced Ph?
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When theDM’s utility function is known, answering this question is easy
because the econometrician can directly calculate expected utility using the
probability of each action and state. However, we are interested in whether
the econometrician can rank experiments without knowing theDM’s utility
function.
To accomplish this, the econometrician must make inferences about

what the experiment might have been for each set of decisions. We use
the same maintained assumptions as Blackwell (1953): for a given u, ex-
periment pg is consistent with Pg if Pg maximizes expected utility among
the joint distributions of actions and states feasible under experiment pg.
3 In all of these cases, the state impacts utility, the DM may not be fully informed about
the state, and the econometrician knows the state.
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Using the set of consistent experiments, we define a binary relation ≿V

that enables the econometrician to rank decisions. We say that Pg≿V Ph if
for every utility functionu, every experiment consistentwithPghas a higher
value of information than every experiment consistent with Ph.
To characterize the relation ≿V, we leverage two features of the prob-

lem. First, for a given utility function u, every experiment consistent with
a given Pg has the same value of information, which is the expected utility
provided by Pg for that utility function. Second, there are utility functions
for which no experiments are consistent with Pg or Ph. Because the con-
dition for Pg≿V Ph is trivially satisfied for such utility functions, the econo-
metrician does not need to consider them when comparing Pg and Ph.
Thus, the econometrician can safely conclude that Pg≿V Ph if they can

rule out enoughutility functions to ensure that Pg provides higher expected
utility than Ph for all remaining utility functions. We establish the general
logic by first showing that restricting utility functions has a clean geomet-
ric structure in the space of outcome lotteries.We then build on this struc-
ture to produce a necessary and sufficient condition for Pg≿V Ph. The ne-
cessity and sufficiency of this condition follows as a direct consequence of
the separating hyperplane theorem. In technical terms, this condition re-
quires that a vector representing the difference in outcomes between Pg

and Ph falls in the cone generated by the restrictions for a utility function
to be consistent with Pg and Ph. This corresponds to solving a system of lin-
ear equations, so it is simple to check, andMATLAB programs that imple-
ment it are provided.4

The rest of the paper is organized as follows. In section II, we provide
our framework, formally define our relation, and show how having a sec-
ond set of decisions or knowing outcomes can allow the econometrician
to rule out enough utility functions for decisions to be ordered according
to the relation. In section III, we first introduce our geometric represen-
tation of ruling out utility functions and then leverage this representation
to identify a testable condition that is both necessary and sufficient for
decisions to be ranked according to ≿V. Section IV concludes by discuss-
ing related literature.
II. Framework
For each presentation of the facts, we assume that the DM starts with an
interior prior over a finite set of states Q given by m ∈ DðQÞ. The DM re-
ceives a signal realization, and as is now standard, a signal realization is
represented by the posterior belief g ∈ DðQÞ that it generates (see Kam-
enica and Gentzkow 2011). This process is summarized by an experi-
ment p that is a joint distribution over states Q and posteriors D(Q), and
4 Programs are available at https://github.com/danieljosephmartin.

https://github.com/danieljosephmartin/
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for notational simplicity we assume that the experiment has finite sup-
port over D(Q).
Given a posterior belief generated by an experiment, we assume that

the DM implements a decision rule j :DðQÞ→DðAÞ, where A represents
a finite set of actions. The DM receives outcome xða, qÞ ∈ X when action
a ∈ A is chosen in state q ∈ Q, and the decision rule maximizes expected
utility based on a utility function u : X →R.5

We consider an econometrician who wants to compare the expected
utility provided by two experiments (two presentations of the facts). We
assume that the unconditional probability of states is the same across
the experiments, and our interpretation of this assumption is that a pre-
sentation of the facts cannot change the facts themselves. For instance, a
financial advisor cannot change the actual financial conditions of the in-
stitutions their clients might invest in. In the case of choosing which way
to describe fees, the fees themselves cannot be changed. This assumption
is not required for our characterization, but it simplifies our analysis.
All the econometrician knows about these experiments is the joint dis-

tributions over actions and states they generate. We refer to an arbitrary
joint distribution of actions and states as Pf ∈ fPg , Phg and denote Pf(a, q)
as the probability of choosing action a and being in state q for Pf.6

As with other stochastic choices, each Pg and Ph can be interpreted as
watching the DM face a decision infinitely often. In practice, one might
estimate it from repeated but finite choice data or by looking at a popu-
lation rather than an individual, as in the literature on discrete choice fol-
lowing McFadden (1973). For notational simplicity, we assume that all
outcomes can be obtained by taking some action in some state and that
for each distribution of actions and states, each action is chosen in some
state and an action is chosen in each state.7 This joins a growing literature
that considers stochastic choice to be essential for studying information
and utility (e.g., Manzini and Mariotti 2014; Apesteguia and Ballester
2018).
For what follows, it is not necessary for the econometrician to also know

the outcome received from taking each action in each state, as it is with-
out loss of generality for the econometrician to arbitrarily assign a distinct
outcome to every action in every state. However, the presence of an out-
comes space allows us to accommodate cases where the econometrician
5 The outcome space is also finite, and we denote its cardinality as M. It has generic el-
ement x or xm.

6 The joint distributions Pg and Ph are state-dependent stochastic choice data, which
were proposed for information-theoretic revealed preferences by Caplin and Martin (2015).

7 Our results would still go through without these assumptions, but doing so would re-
quire carefully specifying the support of each distribution of actions and states and adding
technical regularity conditions, which would necessitate several pieces of additional nota-
tion while adding little additional economic insight.
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knows that utility is equal across some states and actions. For example, the
econometrician might know that an action is “safe” because it yields the
same outcome in every state (for an example, see sec. III.A).
A. Comparison of Decisions
The econometrician would like to compare joint distributions of actions
and states Pg and Ph based on the value of the information provided by the
experiments that generated them. Without knowing anything about the
structure of these experiments, the econometricianmust determine the ex-
periments that are consistent with Pg and Ph.
We define consistency using the same maintained assumptions as in

Blackwell (1953). An experiment pf is consistent with Pf if Pf maximizes
expected utility among distributions of actions and states feasible under
pf.
A joint distribution of actions and states Pf is feasible under pf if there

exists a decision rule jf :DðQÞ→DðAÞ such that

Pf ða, qÞ 5 o
g∈suppðpf Þ

pf ðg, qÞjf ðajgÞ,

where the set of possible posterior beliefs is given by supp(pf). Given u,
the highest expected utility for experiment pf is

V ðu, pf Þ 5 max
P∈Fðpf Þoa∈Aoq∈QPða, qÞuðxða, qÞÞ,

where F(pf) represents the set of all distributions of actions and states
feasible under pf. The functionV(u, pf) is also known as the value of in-
formation for experiment pf given utility function u.8 Thus, Pf is consistent
with pf if

Pf ∈ argmax
P∈Fðpf Þ

o
a∈A
o
q∈Q

P ða, qÞuðxða, qÞÞ:

To allow the econometrician to rank distributions of actions and states
based on the value of information for consistent experiments, we formally
define the relation ≿V as

Pg≿V Ph

if for every u,

V ðu, pg Þ ≥ V ðu, phÞ
for every pg consistent with Pg and every ph consistent with Ph.
8 An alternative way to define the value of information is as the improvement over the
utility from taking actions at prior beliefs (see Frankel and Kamenica 2018; Lara and
Gossner 2020). Since the prior is fixed across experiments in our framework, this defini-
tion would provide the same relative welfare assessments.
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There are two features of the problem that help us in characterizing
this relation. First, for a given u, every experiment pf consistent with Pf

has the same value of information, which is the expected utility provided
by Pf :

V ðu, pf Þ 5 o
q∈Q
o
a∈A

Pf ða, qÞuðxða, qÞÞ:

Second, we need to consider only those utility functions for which there
exist experiments consistent with Pg and Ph, as the condition for Pg≿V Ph

is trivially satisfied for all other utility functions. Putting this together,
Pg≿V Ph if and only if for all u for which there are experiments consistent
with Pg and Ph,

o
q∈Q
o
a∈A

Pg ða, qÞuðxða, qÞÞ ≥ o
q∈Q
o
a∈A

Phða, qÞuðxða, qÞÞ:
B. Ruling Out Utility Functions
To operationalize this restatement of Pg≿V Ph, the econometrician needs
to identify those u for which there are experiments consistent with Pg and
Ph or, equivalently, to rule out those u for which there does not exist an
experiment consistent with Pg or Ph.
For utility function u, there does not exist an experiment consistent

with Pf ∈ fPg , Phg if it is possible to improve utility by making a wholesale
switch from any chosen action to another action. If the DM can improve
utility by switching to an action b ∈ A at all posteriors where they chose
action a ∈ A, this means that whatever decision rule pairs with an exper-
iment to make Pf feasible cannot maximize expected utility.
This is demonstrated in the following simple example, where utility

equal to one when action a3 is taken in state q1, action a 2 is taken in state
q2, and action a1 is taken in state q3:
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For this utility function, Pf is not consistent with any experiment because
the DM can improve utility by making a wholesale switch to choosing a3

when a1 was chosen. When the DM chooses a1, they get a utility of zero
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for certain, but if they had chosen a3 instead, the DM could have gotten a
utility of one for certain.
Caplin and Martin (2015) formalize this logic by introducing the no

improving action switches (NIAS) condition, which is a system of linear
inequalities ensuring it is better not to make a wholesale switch from any
chosen action a to any other action b. Utility function u satisfies NIAS for
Pg and Ph if

o
q∈Q

Pf ða, qÞuðxða, qÞÞ ≥ o
q∈Q

Pf ða, qÞuðxðb, qÞÞ

for all Pf ∈ fPg , Phg and a, b ∈ A. The NIAS inequality for choosing a over
b in Pf indicates that choosing a instead of b is optimal on average at the
choice probabilities where a is chosen in Pf, given the utility of the out-
comes from choosing a instead of b.
As illustrated above, if a utility function u does not satisfy NIAS, then

there does not exist an experiment consistent with Pf. Caplin and Martin
(2015) show that the reverse is true as well. If u satisfies NIAS, then there
always exists an experiment consistent with Pf for that u.9 Thus, the set of
all u satisfying NIAS for Pg and Ph is precisely the set of u the econome-
trician should consider when comparing Pg and Ph.
We establish here a general feature of NIAS that enhances its analytical

and computational tractability. The following lemma indicates which
NIAS inequalities must hold with equality and which must hold strictly.
In other words, it states that for Pf ∈ fPg , Phg the NIAS inequality for
choosing a over b holds with equality if andonly if the outcomes associated
with that NIAS inequality (the additional probability of each outcome
gained by not switching from a to b) can be expressed as a nonpositive
combination of the outcomes associated with other NIAS inequalities.
Lemma 1. For every u that satisfies NIAS,

o
q∈Q

Pf ða, qÞuðxða, qÞÞ 5 o
q∈Q

Pf ða, qÞuðxðb, qÞÞ (1)

for a, b ∈ A if and only if there exists a collection of N triples with generic
element (Pn, an, bn) having Pn ∈ fPg , Phg, an ∈ A, bn ∈ A, and ðPn, an, bnÞ ≠
ðPf , a, bÞ and nonpositive weights w1, ... , wN such that for every x ∈ X ,

o
q∈Q

Pf ða, qÞð1 xða,qÞ5xf g 2 1 xðb,qÞ5xf gÞ

5 o
N

n51

wn o
q∈Q

Pnðan, qÞð1 xðan ,qÞ5xf g 2 1 xðbn ,qÞ5xf gÞ
� �

,

(2)
9 For instance, if u satisfies NIAS, then the revealed experiment for Pf is consistent with Pf

for that u.
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where 1fxða,qÞ5xg is an indicator function that takes a value of one when the
outcome from taking action a in state q yields outcome x.
Proof. See the appendix. QED
C. Ruling Out Utility Functions to Rank Decisions
The following two examples demonstrate that NIAS can rule out enough
utility functions to allow the value of information to be ranked between
two distributions of actions and states.
1. Tracking Problems
We first consider “tracking” decision problems, in which the DM receives
a state-specific outcome xk if their actionmatches state qk and outcome xB
if they fail to match the action to the state. For this class of decision
problems, themap x(a, q) between actions, states, and outcomes is known
by the econometrician and is given by

xðaj , qkÞ 5
xk j 5 k,

xB j ≠ k:

(

For the three-action and three-state version of this tracking problem,
the map between actions, states, and outcomes can be represented as a
matrix where actions a1–a3 are given in the rows and states q1–q3 are given
in the columns:

q1 q2 q3

x1 xB xB

xB x2 xB

xB xB x3
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Imagine the following distribution of actions and states, which were
given in the introduction:
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In the analysis that follows, we show that these distributions of actions
and states reveal that the outcomes from matching actions to states are
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“good” and the outcome from not matching actions is “bad.” Formally,
this means that for all utility functions that rationalize Pg and Ph, uðxkÞ ≥
uðxBÞ for all k ∈ f1, 2, 3g. Given this, Pg will be revealed to have a higher
value of information because the DM matches actions to states more of-
ten in every state. In terms of signal structures, it is as if Pg is generated by
a DM with a signal structure that is perfectly informative about whether
the state is q1 but is not as informative about the other states as the signal
structure that generated Ph.
Without loss of generality we setuðxBÞ 5 0, so we can compute the value

of information for Pg as

20

100
uðx0Þ 1 22

100
uðx1Þ 1 22

100
uðx2Þ

and for Ph as

10

100
uðx0Þ 1 20

100
uðx1Þ 1 20

100
uðx2Þ:

Clearly, if u(x1), u(x2), or u(x3) are revealed to be nonnegative for all ra-
tionalizing utility functions, then Pg is revealed to have a higher value of
information.
The fact that these utilities are nonnegative can be established through

the NIAS inequalities for Pg. The NIAS inequality for Pg for a1 chosen over
action a2 gives uðx1Þ ≥ 0 because

o
q∈Q

Pf ða1, qÞuðxða1, qÞÞ ≥ o
q∈Q

Pf ða1, qÞuðxða2, qÞÞ,

20

100
uðx1Þ ≥

20

100
uðxBÞ 5 0:

Likewise, the NIAS inequality for Pg for a2 chosen over action a1 gives
uðx2Þ ≥ 0, and the NIAS inequality for a3 chosen over action a1 gives
uðx3Þ ≥ 0.
2. Problems with Distinct Outcomes
Next, we consider a common class of decision problems in which every
action yields a distinct outcome in every state, so that xða, qÞ ≠ xðb, nÞ if
a ≠ b or q ≠ n. As noted previously, this case covers the situation where
the econometrician does not know the map between actions, states, and
outcomes.
For the three-action and three-state version of this tracking problem,

the map between actions, states, and outcomes can be represented as a
matrix where actions a1–a3 are given in the rows and states q1–q3 are given
in the columns:
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q1 q2 q3
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One example of this is given by
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Like the tracking example, these distributions of actions and states will
reveal that the DM prefers the outcome obtained when choosing action
a1 when the state is q1, prefers the outcomes obtained when choosing a2
and a3 in the other states, and is perfectly informed when taking action
a1. Once again, it is as if for Pg the DM gets a signal realization that is per-
fectly informative of whether the state is q1 and so knows to take action a1

if the state is q1 and not to choose action a1 otherwise.
However, unlike the tracking example, this Pg and Ph reveal that the util-

ity obtained from taking actions a2 and a3 is the same in every state.10 This
follows from the fact that the NIAS inequalities for a2 chosen over a3 and
a3 chosen over a2 hold with equality for both Pg and Ph, which is a conse-
quence of lemma 1. Lemma 1 states that an NIAS inequality is equal to
zero if and only if that NIAS inequality can be expressed as a nonposi-
tive combination of other NIAS inequalities. For example, the NIAS in-
equality for a2 chosen over a3 for Pg is ð16=72Þðuða2, q2Þ 2 uða3, q2ÞÞ1
ð8=72Þðuða2, q3Þ 2 uða3, q3ÞÞ ≥ 0.11 The negative of this can be obtained
by simply adding together the outcome lotteries from the NIAS inequal-
ities for a3 chosen over a2 for Pg, for a2 chosen over a3 for Ph, and for a3
chosen over a2 for Ph.
Given that the NIAS inequalities for a2 chosen over a3 and a3 chosen

over a2 hold with equality for Pg, the utility differences between a2 and
a3 in q2 and the utility differences between a2 and a3 in q3 are both equal
to zero because those NIAS inequalities say
10 This example can also be generalized to any version of this problem with arbitrarily
many actions and at least as many states as actions.

11 Given that there are no common outcomes across states and actions in this decision
problem, we will shorten u(x(a, q)) to u(a, q).
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16

72
uða2, q2Þ 2 uða3, q2Þð Þ 1 8

72
uða2, q3Þ 2 uða3, q3Þð Þ 5 0

and

2
8

72
uða2, q2Þ 2 uða3, q2Þð Þ 2 16

72
uða2, q3Þ 2 uða3, q3Þð Þ 5 0,

which is possible only if uða2, q2Þ 2 uða3, q2Þ 5 0 and uða2, q3Þ 2
uða3, q3Þ 5 0. Likewise, given that the NIAS inequalities for a2 chosen
over a3 and a3 chosen over a2 hold with equality for Pg , the utility differ-
ence between a2 and a3 in q1 is also equal to zero. Thus, the utility from
taking a2 is the same as the utility from taking a3 in every state.
Given this, the value of information is higher for Pg if

12

72
ðuða1, q1Þ 2 uða2, q1ÞÞ

1
6

72
ðuða2, q2Þ 2 uða1, q2Þ 1 uða2, q3Þ 2 uða1, q3ÞÞ ≥ 0:

To show that this holds, we first note that uða1, q1Þ ≥ uða2, q1Þ (the DM
preferring to take action a1 in state q1) follows directly from the NIAS in-
equality for a1 chosen over a2 for Pg. Second, because a2 and a3 give the
same utility in every state, the NIAS inequalities for a2 chosen over a1
and a3 chosen over a1 for Pg yield

16

72
ðuða2, q2Þ 2 uða1, q2ÞÞ 1 8

72
ðuða2, q3Þ 2 uða1, q3ÞÞ ≥ 0

and

8

72
ðuða2, q2Þ 2 uða1, q2ÞÞ 1 16

72
ðuða2, q3Þ 2 uða1, q3ÞÞ ≥ 0:

Adding these together gives

uða2, q2Þ 2 uða1, q2Þ 1 uða2, q3Þ 2 uða1, q3Þ ≥ 0:

With this, we have that Pg provides a higher value of information.
III. Characterizing the Relation
Is there a general approach to checking whether there are enough re-
strictions on u to ensure Pg≿V Ph? We produce a necessary and sufficient
condition for Pg≿V Ph by moving fully to the space of probabilities and
probability differences over outcomes. There are three features thatmake
this space important. First, it allows geometric representation of theNIAS
inequalities. Second, it allows identification of all utility functions that
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satisfy these inequalities. Third, it identifies all differences in outcome
lotteries that are guaranteed to raise utility (which allows us to identify
≿V). Because of this geometric representation, we can reduce Pg≿V Ph to
a single system of linear equations.
A. Ruling Out Utility Functions Geometrically
First, each NIAS inequality can be represented as anM-dimensional vec-
tor ~df ða, bÞ that gives the outcome lottery gained from not making a
wholesale switch from action a to action b for Pf —in other words, the ad-
ditional probability of receiving each outcome from not making this
wholesale switch. Element m of this vector gives the additional probabil-
ity of receiving outcome xm in X from not making a wholesale switch from
action a to action b for Pg, which is

o
q∈Q

Pf ða, qÞð1 xða,qÞ5xmf g 2 1 xðb,qÞ5xmf gÞ,

where 1fxða,qÞ5xmg is an indicator function that takes a value of one when
the outcome from taking action a in state q yields outcome xm. The con-
vex cone D formed by all NIAS inequalities is

D 5 a1
~df1ða1, b1Þ 1 ⋯1aN

~dfN ðaN , bN Þjan ∈ R1, fn ∈ g , hf g, an, bn ∈ A
� �

:

A utility function can be represented as an M-dimensional vector ~u,
where elementm gives the utility of outcome xm. A utility vector~u satisfies
NIAS if~d •~u ≥ 0 for every vector~d ∈ D. We call the convex cone formed
by all ~u that satisfy NIAS the NIAS utility cone.
We illustrate this with a simple decision problem that has a safe action,

where the map between states, actions, and outcomes is given by

q1 q2

x1 x2

x3 x3

 !
a

b

:

Imagine the following distribution of actions and states:

Pg 5

q1 q2

0:4 0:1

0:1 0:4

 !
a

b
 and Ph 5

q1 q2

0:15 0:05

0:35 0:45

 !
a

b

:

Choosing a in Pg gets x1 and x2 with unconditional probabilities 0.4 and
0.1. Choosing b gets x3. Hence, sticking with a over b yields

~dg ða, bÞ 5 ð0:4, 0:1,20:5Þ:
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Likewise, sticking with b over a in Pg gets x3 rather than x1 with uncondi-
tional probability 0.1 and x2 with unconditional probability 0.4:

~dg ðb, aÞ 5 ð20:1,20:4, 0:5Þ:
Analogously,

~dhða, bÞ 5 ð0:15, 0:05,20:2Þ,
~dhðb, aÞ 5 ð20:35,20:45, 0:8Þ:

NIAS identifies rationalizing utility functions as all that have (weakly)
positive dot products with all of these vectors. This can be visualized in
two dimensions by normalizing uðx3Þ 5 0. With this normalization, the
(x1, x2) space can illustrate both D and the NIAS utility cone, which is given
in figure 1.
B. Ranking Decisions Geometrically
Let ~dðg , hÞ be an M-dimensional vector that gives the outcome lottery
gained from encountering Pg instead of Ph—in other words, the addi-
tional probability of receiving each outcome from Pg. For outcome xm
in X, this is

o
a∈A
o
q∈Q

ðPg ða, qÞ 2 Phða, qÞÞ1 xða,qÞ5xf g:
FIG. 1.—Illustration of the geometric structure of ruling out utility functions using
NIAS.
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The joint distribution Pg being revealed to have a higher value of infor-
mation (Pg≿V Ph) is equivalent to~dðg , hÞ •~u ≥ 0 for all~u in the NIAS util-
ity cone. Thus, Pg≿V Ph if and only if the vector ~dðg , hÞ is in D because a
vector is in D if and only if it has a nonnegative dot product with all~u in
the NIAS utility cone.
Finally, because~dðg , hÞ is in D if and only if it is a nonnegative weighted

average of vectors in D, a necessary and sufficient condition for Pg≿V Ph

corresponds to the outcome lottery gained from Pg being a nonnega-
tive weighted average of the outcome lotteries gained from not making
wholesale switches from any action for either Pf or Pg.
Returning to the example, Pg yields (0.4, 0.1, 0.5), and Ph yields (0.15,

0.05, 0.8). Hence,~dðg , hÞ 5 ð0:25, 0:05,20:3Þ. As illustrated in figure 2,
~dðg , hÞ is in D, so it has a positive dot product with the entire NIAS utility
cone, so Pg and Ph are ranked by ≿V.
C. General Condition for Ranking Decisions
The condition that~dðg , hÞ is in D, which we call decision improvement with-
out action switches (DISI) for Pg over Ph, is defined for a weighting function
tgh : A � A→R1, which provides these nonnegative weights.
Condition 1 (DISI). Weighting function tgh : A � A→R1 satisfies

DIAS for Pg over Ph if for every x ∈ X ,
FIG. 2.—Illustration of the geometric structure of ranking decisions.
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o
Pf ∈ Pg ,Phf g

o
a∈A
o
b∈A
o
q∈Q

Pf ða, qÞð1 xða,qÞ5xf g 2 1 xðb,qÞ5xf gÞtghða, bÞ

5 o
a∈A
o
q∈Q

ðPg ða, qÞ 2 Phða, qÞÞ1 xða,qÞ5xf g:

The following theorem formally shows that DISI provides a necessary
and sufficient condition to reveal that every experiment consistent with
one distribution of actions and states has a higher value of information
than every experiment consistent with one distribution of actions and
states. After restating NIAS and DISI in terms of matrix multiplication,
the proof of this theorem follows as a direct consequence of Farkas’s
lemma (Farkas 1902).
Theorem 1. Pg≿V Ph if and only if there exists a weighting function tgh

that satisfies DISI for Pg over Ph.
Proof. See the appendix. QED
This theorem has an economic interpretation in terms of preferences

over outcome lotteries. DISI states that the difference in the outcome lot-
teries offered by the distributions of actions and states can be represented
as the difference in two compound lotteries: one composed of the out-
come lotteries from taking each action a for Pg and the other composed
of outcome lotteries from taking each action b with the same probability
as a. These compound lotteries have the same weights for all Pf ∈ fPg , Phg
and a, b ∈ A, which are given by a normalized version of tgh. Because NIAS
is satisfied, there exists a preference relation over lotteries such that every
element of one compound lottery is weakly preferred to every element in
the other compound lottery. Since all elements of the two compound lot-
teries are preference ordered, the compound lotteries are also prefer-
ence ordered, which means that the outcome lotteries given by each dis-
tribution of actions and states are as well.
As noted previously, this theorem applies even when the econometri-

cian does not know the outcomes to taking actions in each state. In this
case, the econometrician can arbitrarily assign a distinct outcome to ev-
ery action in every state. If DISI is satisfied given the unrestricted out-
come mapping, then Pg≿V Ph also holds for all other outcome mappings
that are consistent with at least one utility function that satisfies NIAS.
D. Testability
Determining whether there exists a tf that satisfies DISI corresponds to
determining whether there is a solution to a system of linear equations,
so it is simple to check whether distributions of actions and states are wel-
fare ranked. We provide MATLAB computer programs that determine
whether a solution to this linear system exists for a given set of data.12
12 Programs are available at https://github.com/danieljosephmartin.

https://github.com/danieljosephmartin/


comparison of decisions under unknown experiments 3201
Also, there are settings where some options are clearly dominant, and
NIAS and DISI can be easily amended to account for these additional re-
strictions. Say, for example, that outcome x1 clearly dominates outcome
x2. This restriction on utility can be incorporated into NIAS by generat-
ing an additional linear inequality given by

o
x∈X

1x5x1 2 1x5x2ð ÞuðxÞ ≥ 0:

Clearly, this restriction on the set of admissible utility functions can only
reduce the set of u that satisfy NIAS.
Although DISI is not expressed in terms of utility, the dominance of

outcome x1 over outcome x2 can be incorporated into DISI for Pg by re-
quiring that, in addition to the weighting function tgh, there exists a non-
negative t that solves

o
Pf ∈ Pg ,Phf g

o
a∈A
o
b∈A
o
q∈Q

Pf ða, qÞð1 xða,qÞ5xf g 2 1 xðb,qÞ5xf gÞtghða, bÞ

1 1x5x1 2 1x5x2ð Þt
5 o

a∈A
o
q∈Q

ðPg ða, qÞ 2 Phða, qÞÞ1 xða,qÞ5xf g

for every x ∈ X . If t is equal to zero, this reduces to the requirement for
DISI, so this addition can only increase the proportion of Pg and Ph where
there exists a weighting function tgh that satisfies DISI. Sensibly, knowl-
edge about dominance improves our ability to rank decisions according
to their welfare.
IV. Related Literature
Our work is most closely related to three other papers. First, our relation
draws natural parallels to the seminal informativeness relation provided
by Blackwell (1953). In comparing experiments, Blackwell holds fixed pg

and ph and for each u evaluates the expected utility provided by all Pg and
Ph consistent with those experiments. On the other hand, in comparing
decisions, we hold fixed Pg and Ph and for each u evaluate the expected
utility provided by all pg and ph consistent with those decisions. This
change in perspective produces an important technical difference that
is illustrated in the preceding sections. For Blackwell’s relation, every u
must be considered because every experiment pg has a consistent Pg for
every u. However, every u does not need to be considered for our relation
because Pg may not have a consistent pg for some u.
Second, like our paper, Lu (2016) also orders unknown experiments, but

his characterization requires much more than simply the joint distribu-
tionof actions and statesPg andPh. He also requires that the econometrician
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observes richer “test functions” Fg and Fh, which are not naturally occurring.
A test function F indicates how often the actions are chosen when the set
of actions is paired with every possible mixture between the best and
worst action.
Third, our paper builds on the results of Caplin andMartin (2015) and

theNIAS condition they introduce. As a result, our paper is also related to
the work of Bergemann andMorris (2016), as their obedience condition
is identical to the NIAS condition in a single-player setting with no initial
signals. However, an important distinction is that Bergemann andMorris
(2016) take the utility function as known and use the obedience condi-
tion to determine the set of joint distribution of actions and states that
are consistent with Bayes correlated equilibrium, whereas Caplin andMar-
tin (2015) use NIAS to determine the set of utility functions that are con-
sistent with a joint distribution of actions and states.
We provide three innovations relative to Caplin and Martin (2015).

First, we provide a novel geometric representation for usingNIAS to iden-
tify consistent utility functions. Second, we provide a new result showing
when NIAS holds strictly and weakly, which enhances the analytical and
computational tractability of NIAS. Third, and most importantly, we pro-
vide an entirely new application of NIAS by showing exactly when it can
rule out enough utility functions to allow the value of information to be
ranked between two unknown experiments.
Appendix

A1. Proof of Lemma 1

First, for any u that satisfies NIAS, by definition

o
x∈X

o
q∈Q

Pf ða, qÞð1 xða,qÞ5xf g 2 1 xðb,qÞ5xf g

� �
uðxÞ ≥ 0 (A1)

for any triple (Pn, an, bn), where Pn ∈ fPf , Pgg, an ∈ A, and bn ∈ A. Thus, for any u
that satisfies NIAS,

21 �o
x∈X

o
N

n51

wn o
q∈Q

Pnðan , qÞð1 xðan ,qÞ5xf g 2 1 xðbn ,qÞ5xf g

� �� �
uðxÞ ≥ 0

for any collection of triples (Pn, an, bn), where P1, ::: , PN ∈ fPf , Pgg, a1, ... , aN ∈ A,
and b1, ... , bN ∈ A with ðPn , an , bnÞ ≠ ðPf , a, bÞ and nonpositive weights w1, ::: , wN .
Assuming that equation (2) holds, this implies that for any u that satisfies NIAS,

21 �o
x∈X

o
q∈Q

Pf ða, qÞð1 xða,qÞ5xf g 2 1 xðb,qÞ5xf g

� �
uðxÞ ≥ 0:

Because of equation (A1), this must equal zero, so equation (1) must hold.
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Second, if equation (1) holds, then for all u that satisfy NIAS, it cannot be that

21 �o
x∈X

o
q∈Q

Pf ða, qÞð1 xða,qÞ5xf g 2 1 xðb,qÞ5xf g

� �
uðxÞ < 0: (A2)

By Farkas’s lemma, equations (A1) and (A2) mean that there must exist non-
positiveweights on that collection ofNIAS inequalities that give equation (2), com-
pleting the proof. QED

A2. Proof of Theorem 1

TheNIAS inequality for Pf ∈ fPg , Phg and actions a, b ∈ A can be expressed as a 1�
M-row vector ~df ða, bÞ, where element m of this vector gives the difference in the
probability of receiving outcome xm from taking action a and from taking action
b with the same probability. This is given by

o
q∈Q

Phða, qÞð1 xða,qÞ5xmf g 2 1 xðb,qÞ5xmf gÞ,

where 1fxða,qÞ5xmg is an indicator function that takes a value of one when the out-
come from taking action a in state q yields outcome xm.

Stacking the row vectors for all NIAS inequalities for Pf ∈ fPg , Phg produces a
J 2 � M matrix Dh, where

Dh 5

~dhða1, a1Þ
~dhða1, a2Þ

: : :

~dhðaJ , aJ21Þ
~dhðaJ , aJ Þ

2
666666664

3
777777775
,

and stacking the matrix of NIAS inequalities for both distributions of actions and
states produces a 2 � J 2 � M matrix D, where

D 5
Df

Dg

" #
:

Based on this matrix D, NIAS can be restated as theM � 1-column vector u ∈ RM

satisfying Du ≥ 0, with DuðmÞ > 0 for some m ∈ f1, ::: ,Mg.
In addition, the requirement for Pg to be revealed to have a higher value of

information than Ph can be expressed as a 1 � M-row vector ~d, where element
m gives the expected gain in outcome xm from choosing with Pg instead of Ph,
which is given by

o
a∈A
o
q∈Q

ðPf ða, qÞ 2 Pg ða, qÞÞ1 xða,qÞ5xmf g:

Here Pg≿V Ph can be restated as ~du ≥ 0 for all u ∈ RM that satisfy NIAS. With
this notation, both directions of the theorem follow from Farkas’s lemma.
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1. There exists t ∈ R
2�J 2

1 s.t. DT t 5 ð~dÞT ⇒. For all u ∈ RM satisfying NIAS,
~du ≥ 0. Assume not. Take u ∈ RM such that NIAS is satisfied, so that
Du ≥ 0, but ~du < 0. By Farkas’s lemma, there cannot exist a t ∈ R

2�J 2

1 s.t.
DT t 5 ð~dÞT , which is a contradiction.

2. For all u ∈ RM satisfying NIAS, ~du ≥ 0 ⇒. There exists t ∈ R
2�J 2

1 s.t.
DT t 5 ð~dÞT . Assume there does not exist t ∈ R

2�J 2

11 such that DT t 5 ð~dÞT .
By Farkas’s lemma, there must exist a u ∈ RM satisfying NIAS and with
~du < 0, which is a contradiction. QED
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