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Abstract

We introduce a new model of framing e¤ects associated with where an option appears in a list,

whether or not it is the default, and other such easily observable properties. These properties

are e¤ortlessly identi�ed by the decision maker, but in contrast, the payo¤s to choosing an

option can be hard to determine. The decision maker in our model has prior beliefs about the

correlation between easily observed properties and payo¤s, such as whether items at the top of

a list are of higher quality. This decision maker then exerts optimal e¤ort to learn the payo¤s

to each option, forms appropriate posterior beliefs, and chooses to maximize expected utility.

Hence framing e¤ects arise endogenously as an optimal response to payo¤ uncertainty. We

specialize the model to analyze how optimizing behavior may shape the impact of list order on

demand. We also show how to recover utility functions for framed choice data, as required for

policy analysis. Despite its generality, our model makes falsi�able predictions about the extent

of framing e¤ects.
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1 Introduction

A multitude of framing e¤ects, in which choice is impacted by how options are described or dis-

played, have been documented in the psychological and economic literatures. Systematic e¤ects of

this form are of ever growing interest to policy makers, because they suggest methods for alter-

ing and potentially for improving choices without limiting the available options (see Thaler and

Sunstein [2008]). We study those framing e¤ects that derive from easily observed properties of the

available options, such as being the default option or at the top of a list.1 For example, choice

probabilities are increased when a given retirement portfolio is the default option (Madrian and

Shea [2001]) and when a political candidate is presented at the top of a list (Miller and Krosnick

[1998]).2

The framing e¤ects that we model arise endogenously as an optimal response to incomplete

information about the available choice options. The easily observed properties of a decision envi-

ronment immediately identify the set of action choices (e.g. select the top item in a list), but the

decision maker (DM) starts o¤ uncertain about the payo¤s to taking each action. The exact map

between actions and prizes in a given decision problem, called the �frame�, is unknown to the DM.

The DM has prior beliefs about the likelihood of all possible frames, and by exerting perceptual

e¤ort, learns better the actual frame faced in a given decision problem. From this learning, the

DM forms posterior beliefs, and then chooses the action that maximizes expected utility.

While boundedly rational, the agents in our model are sophisticated about how these bounds

constrain them, doing as well as possible in light of their unavoidable limitations. Speci�cally,

each DM selects an optimal strategy balancing the costs of perceptual e¤ort against the resulting

improvement in expected prize utility. Moreover, �nal choices are selected optimally given the

DM�s posterior understanding of available options. Because there may be remaining uncertainty

even after exerting optimal e¤ort, �nal choice is generally among lotteries over prizes rather than

among deterministic prizes.

An insight from the model is that framing e¤ects are strongly shaped by the DM�s beliefs about

the correlation between the easily observed properties of an option and the utility of that option.3

1We do not examine, for instance, those framing e¤ects that arise from how outcomes are depicted (e.g. the Asian

disease problem of Tversky and Kahneman [1981]).
2See Salant and Rubinstein [2008] for more examples of this type.
3That beliefs are natural to consider in strategic models of attentionally limited choice is shown by Eliaz and
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By way of example, when options are listed by Google or Amazon, many searchers start with the

�rst item in the list (see Athey and Ellison [2009]). Yet if the �rst item or two in these lists were

to be dominated by low quality algorithmic �cheats�, we would expect searchers to notice this

and then to start searching further down the list. Similarly, if a company gained a reputation for

using defaults to dupe its customers into choosing inferior products, we might expect an increasing

number of opt outs (see Brown and Krishna [2004]). On the other hand, if individuals believe that

policy makers use high quality defaults, they may opt out only infrequently, particularly if items

are complex (see Caplin and Martin [2012]).

We illustrate the main elements of our model in the special case of ordered search through a

list of options, as in Rubinstein and Salant [2006]. In addition to modeling choice, we address the

recoverability question posed by Rubinstein and Salant [2011]: if we observe boundedly rational

choices that result from optimizing behavior, to what extent can we recover the underlying utility

function? This question, which is vital from the viewpoint of policy design, is made non-trivial by

the fact that framing e¤ects destroy the automatic link between preferences and choices: one item

may be chosen over another in a particular frame even if it is of strictly lower utility. We show that

the model enables us in principle to recover information not only concerning pure prize preferences,

but also concerning the relative strength of preference for one prize over another.

In addition to our in-depth analysis of list order search, we provide a far-reaching generalization

based on a �perceptual mapping�that maps objective frames into subjective states. These states

re�ect the DM�s uncertainty concerning the frame they face (their �perception�of the frame). We

assume expectations are rational, as in models of rational inattention (e.g. Sims [2003], Gabaix

[2012], Woodford [2012]). This means that DMs have correct beliefs about how likely the available

choices are to yield the possible prizes given their subjective state. That is, given all the frames

that could have put the DM in a particular subjective state, the lottery associated with each action

is correct on average. This approach is analogous to a Bayesian signal process in the mind of the

DM. We illustrate how this regularity links our model to those of Eyster and Rabin [2005], Jehiel

[2005], and Bolton and Faure-Grimaud [2009], yet di¤erentiates it from such models as Esponda

[2008], Steiner and Stewart [2008], and Schwartzstein [2012].

Spiegler [2011a, b]. More broadly, McKenzie and Nelson [2003] give evidence that verbal descriptions impact beliefs

through their informational content, while Kamenica [2008] presents a model in which context impacts beliefs through

its informational content.
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Given the generality of this model of framing e¤ects, it is not immediately obvious that it is

testable when perception is unobservable. We derive positive results in this regard. Just as the

model of objective utility maximization is equivalent to a set of linear constraints (Afriat [1967]),

so our model of subjective optimization is equivalent to a set of �No Improving Action Switches�

constraints. These constraints indicate whether a data set that exhibits framing e¤ects is consistent

with our general model. Further, these constraints can be used to discover the extent to which

the underlying utility function can be recovered when framing e¤ects are present, but perception

is unobservable.

In terms of methodology, our approach follows up on the proposals of Caplin and Dean [2011] to

incorporate non-standard data in models of choice (see Gomberg [2011] for an analysis of committee

voting along these lines) and of Lipman [1991] to treat boundedly rational agents as constrained

optimizers.

In section 2, we outline the action/prize distinction that sits at the heart of our model. In

sections 3 and 4, we analyze list order search. In sections 5 and 6, we present the general model,

and we highlight similarities and di¤erences with alternative approaches in section 7. There are

close connections both with models of rational inattention and with various strategic models such

as that of Bergemann and Morris [2011]. The applicability of our framework to policy questions is

noted in the concluding remarks in section 8.

2 Model

2.1 Prizes and Actions

There is a �nite prize set X of size N � 2, from which the DM is choosing, with generic element

xn 2 X. We allow this set to be presented in many di¤erent manners. To formalize presentational

di¤erences, we distinguish the act of choice from the receipt of a prize. The choice environment has

easily observable properties, such as precise physical locations on a screen, placements in a store,

etc., which are internalized without di¢ culty. From these properties, the DM knows immediately

the set of available actions, such as choosing the top item on the screen, the leftmost item on a

shelf, etc.
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De�nition 1 An action set for prize set X is a �nite set A that has at least the same cardinality

as the prize set,

jAj =M � jXj = N � 2:

The generic element of action set A is am 2 A. For much of the remaining paper, we operate

not only with a �xed set of prizes, but also with a �xed action set.

2.2 Frames

Choosing an action will yield one of the prizes, as formalized in a particular mapping of actions to

prizes. Technically, a frame for prize set X is an onto function f : A ! X, with F the set of all

such frames,

F = ff : A! Xjf is ontog:

To illustrate, consider a case in which three prizes are presented in one of three positions in

a list. Table 1 presents all the possible manners in which the prizes may be framed. By way of

interpretation, note that action a1, corresponding to picking the �rst position on the list, yields

prize x1 when the frame is either f1 or f2.

Table 1. Example frames (3 actions, 3 prizes)

frames F

actions A f1 f2 f3 f4 f5 f6

a1 x1 x1 x2 x2 x3 x3

a2 x2 x3 x1 x3 x1 x2

a3 x3 x2 x3 x1 x2 x1

The assumption that frames are onto captures the idea that the entire prize set is in fact

available in every choice problem.4 Thus, from the viewpoint of classical choice theory, frames

should be irrelevant, since the feasible set of prizes is invariant. In many of the cases that we

consider, including the case of top-down search, we further restrict the function f : A ! X to be

one-to-one, as in table 1. However, allowing for the more general case enables the model to cover

4This assumption is not required in the formal treatment of the model. We introduce it to clarify the application

to framing, which involves distinct presentations of one and the same set of prizes.
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such phenomena as �needle in a haystack�choice sets, in which one good prize is obscured by the

availability of several equivalent bad prizes.

2.3 Expectations

We model a DM making many choices from the same �xed sets of prizes and actions. While the

prize and action sets remain �xed, the frame, which determines the prize that each action yields, is

randomly determined in each decision problem based on a speci�c frame-generating mechanism

(a probability measure over frames) � 2 �(F). For example, if the DM was equally likely to face

all frames in any given decision problem, then the frame-generating mechanism for table 1 would

be,

� (f1) = � (f2) = � (f3) = � (f4) = � (f5) = � (f5) =
1

6
:

In our model, the DM knows the available actions A, the possible prizes X, the set of frames F ,

and the probability that � assigns to each frame, but does not know the frame f realized in each

decision problem. Because of this uncertainty concerning how actions get translated into prizes,

there is room for misperception and mistakes.

The measure � provides the DM a statistical sense of what happens if a given action is selected,

so it can be thought of as the DM�s (stable) prior beliefs about the payo¤s to each action before

any decision problem. After learning something about which frame was realized in a given decision

problem (summarized by information I), the DM arrives at posterior beliefs �I . Continuing the

example above, assume that before making a choice, the DM learns only that the prize associated

with action a1 was x1. The DM�s posterior beliefs would be,

�I (f1) = �I (f2) =
1

2
;

�I (f3) = �I (f4) = �
I (f5) = �

I (f6) = 0:

2.4 Utility and Choice

We model the DM as an expected utility maximizer with utility function U : X �! R. In addition

we assume that expectations are rational. In this case, a useful way to compute expected utility is

with the posterior probability sImn that action am will yield prize xn given information I,

sImn = �
Iff 2 Fjf(am) = xng:
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Optimal choice of action re�ects this posterior,

C (AjI) 2 arg max
am2A

NX
n=1

sImnU(xn):

3 List Order Search and Optimization

We apply our framework to model DMs engaged in list order search to depth J , where 1 � J < M .

In this context, searching the �rst J positions means fully uncovering the prizes associated with

actions a1 to aJ . To pin down the model�s implications for choice, we use list order to break ties in

cases of indi¤erence. That is, if the expected utility of two action choices is equivalent, the action

closer to the top of the list is chosen.

For simplicity, we consider the case with three prizes and three actions. In this simple case,

we can represent each frame by a permutation q = (q1; q2; q3) of the prizes. The interpretation of

permutation q is that prize qm 2 X is at position m in the list, and hence associated with action

am. For example, if q3 = x2 then prize x2 is in the 3rd position in the list, and thus associated

with action a3.

We analyze below three distinct respects in which observed framing e¤ects are impacted by

optimization. We �rst characterize optimal choice if only the top position in the list is searched.

We then consider the optimality of searching some other item than the top position in the list.

Finally, we consider the fully optimal search procedure, which is sequential, so that the stopping

rule depends on the prizes observed in previously searched positions.

3.1 Optimal Choice after Searching Top Position

Consider a simple case in which J = 1, so that only the top position in the list is searched. As

a result, the prize corresponding to action a1 is always seen with perfect clarity, but the prizes

corresponding to actions a2 and a3 are not seen at all. In addition, we set X = f$1; $2; $3g and

assume that the DM is strictly risk averse with monotonic utility for money.

We �rst examine optimal choice if each of the 6 possible frames is equiprobable. Note that if a1

is seen to yield a prize of just $1 (when q1 = $1), then either of the other two actions has maximal

expected utility of 12U ($3) +
1
2U ($2), so that the DM will choose action a2 given our order based
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tie-breaking rule. On the other hand, if q1 2 f$2; $3g, then a1 will be chosen. What results is a

clear framing e¤ect: the chosen action depends on which prize is in the searched location.

Optimal choice is impacted not only by the frame, but also by the frame generating mechanism.

To see this, consider the same prize and action sets, but assume that there are asymmetric frame

probabilities:

�($1; $2; $3) = �($2; $3; $1) =
3

12
;

�($3; $1; $2) = �($3; $2; $1) =
2

12
;

�($2; $1; $3) = �($1; $3; $2) =
1

12
:

A priori, choosing a2 is more appealing than choosing a3 because it has a higher expected utility.

If $2 is seen in the �rst position, then this ranking is preserved. However, if $1 is seen in the �rst

position, then the ranking is reversed: a3 is more appealing than a2.

This reversal in the rankings of unexplored alternatives has implications for �nal choices. For

example, if a1 is seen to yield a prize of just $1 (when q1 = $1), then the expected utility of each

action is,

U ($1) for a1;

1

4
U ($3) +

3

4
U ($2) for a2;

3

4
U ($3) +

1

4
U ($2) for a3:

This implies that the DM will choose action a3. If instead a2 is seen to yield a prize of $2 (when

q1 = $2), then the expected utility of each action is,

U ($2) for a1;

3

4
U ($3) +

1

4
U ($1) for a2;

1

4
U ($3) +

3

4
U ($1) for a3:

In this case a2 will be chosen by agents with low levels of risk aversion, while a1 will be chosen by

those with high enough levels of risk aversion.
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3.2 Optimal Search Order

A DM facing the above environment can work out the expected utility from searching any single

position, and as such determine which position is optimal to search if just one position can be

searched. For the asymmetric example above, note that actions a1, a2, and a3 are all chosen with

probability 1
3 for low levels of risk aversion. With regard to the resulting prize lotteries, when a1 is

chosen it yields $3 for sure, when a2 is chosen it yields 34U ($3) +
1
4U ($1), and when a3 is chosen

it yields 34U ($3) +
1
4U ($2). Overall, the expected utility of searching the �rst position is,

10

12
U($3) +

1

12
U($2) +

1

12
U($1):

Straightforward computations show that when risk aversion is low, searching the second position

instead of the �rst position results in choice of a2 when q2 = $3, choice of a3 when q2 = $2, and

choice of a1 when q2 = $1. As a result, when a2 is chosen it yields $3 for sure, when a3 is chosen

it yields 35U ($3) +
2
5U ($1), and when a1 is chosen it yields

2
3U ($3) +

1
3U ($2). Weighting up these

rewards by their probabilities, we identify expected utility from searching the middle position as,

9

12
U($3) +

1

12
U($2) +

2

12
U($1):

We conclude in this case that searching the top position is strictly superior to searching the middle

position. Continuing in the analogous manner one can con�rm also that searching the top position

is superior to searching the bottom position as well.

Note that optimal search order depends crucially on expectations. In this example, searching

the �rst position is valuable because it reveals signi�cant information concerning the location of the

$3 prize. If we swap the values of q1 and q3 in the frame-generating mechanism, then it is optimal

instead to search the bottom position. Note also that the process above is completely general.

Given any search order and any given depth of search J , optimal choice and the prize received are

a deterministic function of the frame. The end result is that the expected utility of any search

order can be computed in mechanical fashion, revealing optimal search order.

3.3 Optimal Sequential Search

Use of our model to solve for the optimal search strategy extends beyond �xed search to depth J .

One can, for example, solve for the optimal sequential search strategy when the cost of search in
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expected utility units is C > 0 (as in Gabaix and Laibson [2005] and Caplin, Dean, and Martin

[2011]).5 This is simplest to illustrate when all frames are equiprobable and DMs search in list

order. We further simplify the example by assuming that the DM is risk neutral.

The optimal sequential search strategy can be computed by standard backward inductive logic.

If the top two positions have been searched, the action associated with the best prize is identi�ed

for sure, yielding deterministic prize $3. We now compute the continuation value associated with

the optimal strategy if just the top position has been searched, which we denote V1(q1) and measure

in terms of expected dollars. Note �rst that it is clearly optimal to stop and save any additional

search cost if q1 = $3, so that,

V1($3) = 3:

If q1 = $2, then action a1 would be chosen if search stopped, yielding a deterministic $2 prize.

Hence additional search (searching the second position) will be worthwhile if and only if C � 1,

V1($2) =

8<: 2 if C > 1;

3� C if C � 1:

Finally, if q1 = $1, then the best option with no additional search is to take action a2 and thereby

to receive a 50% chance of $2 and a 50% chance of $3. This is worthwhile if and only if C � 0:5.

Hence,

V1($1) =

8<: 2:5 if C > 0:5;

3� C if C � 0:5:

With this, we can compute the conditions under which the initial search (searching the �rst

position) is worthwhile. If the initial search does take place, it is equally likely to yield each possible

value of V1(q1), so that the expected value of searching the �rst position, de�ned as EV1, can be

straightforwardly computed:

EV1 =

8>>><>>>:
2:5� C if C > 1;

17
6 �

C
3 � C if C 2 (0:5; 1];

3� 2C
3 � C if C 2 (0; 0:5]:

If no search occurs, then the optimal choice is to pick a1 and get each prize with probability 1
3 for

an expected reward of $2. Hence we conclude that it is strictly optimal not to search at all if C > 1

5The ability to use this model to compute optimal sequential search strategies generalizes to an arbitrary cost

function speci�ed in expected utility terms.
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and strictly optimal to undertake the �rst search if C < 0:5. There is a unique cuto¤ level of cost

�C 2 (0:5; 1] at which there is indi¤erence,

17

6
�
�C

3
� �C = 2;

so that �C = 5
8 . Thus, searching the top position is optimal if and only if the cost of search is

5
8 or

below.

4 Recoverability

In standard choice theory, choice of prize x1 when x2 is available indicates for sure that x1 has

utility at least as high as x2. This simple condition fails in the case of list order search, as illustrated

in the examples above in which the $2 prize is chosen despite the known availability of the superior

$3 prize. Hence, as Rubinstein and Salant [2011] point out, the extent to which utilities can be

recovered from choices when there is list order search depends on what is learned during the course

of the search process. We now address this recoverability question in the context of the above

examples, highlighting in particular the role that expectations play.

There is one key feature of our model that provides us with traction in recovering the utility

function. Given that beliefs are consistent, the prize lottery that is chosen must be at least as good

as the prize lotteries associated with alternative choices. This limits the set of utility functions that

can give rise to a given pattern of choices, providing the answer in our model to the question of

recoverability. What makes the resulting inequalities non-standard is that they provide information

not only on the ranking of pure prizes, but also on preferences over lotteries.

To illustrate how to recover the set of consistent utility functions, we use the asymmetric frame

generating mechanism of the last section, but generalize the prizes to X = fx1; x2; x3g so that ex

ante there is no known structure to preferences over prizes:

�(x1; x2; x3) = �(x2; x3; x1) =
3

12
;

�(x3; x1; x2) = �(x3; x2; x1) =
2

12
;

�(x2; x1; x3) = �(x1; x3; x2) =
1

12
:

In addition, we assume that the action choices observed in each frame are: a1 when q1 = x3; a2

when q1 = x2; and a3 when q1 = x1.
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Given this frame generating mechanism and pattern of choices, what we can infer about utility

for x1, x2, and x3? Given that switching to alternative choices can never raise utility, utility levels

must satisfy a particular set of linear inequalities. We display these inequalities for each of the

three action choices, contrasting the lottery that is derived from choosing a particular action to

those available from the alternative action choices.

Starting with a1, the �rst such inequality asserts that the expected utility of choosing a1 should

weakly dominate the expected utility from choosing a2 when a1 was selected (q1 = x3),

U(x3) �
1

2
U(x2) +

1

2
U(x1):

An additional, but identical, inequality states that the expected utility of choosing a1 should weakly

dominate the expected utility from choosing a3 in the frames where a1 was selected. These inequal-

ities are not strict given that the unchosen actions are further down the list and that list order is

used to break ties.

The inequality associated with choice of a2 over a1 states that a2 should be strictly dominant

in the frames it was selected, while the corresponding inequality for action a2 over a3 involves only

weak dominance,

3

4
U(x3) +

1

4
U(x1) > U(x2); (�)

3

4
U(x3) +

1

4
U(x1) � 1

4
U(x3) +

3

4
U(x1):

Finally, with regard to a3, the inequalities state that the lottery choice associated with a3 in

the frames in which it is selected should strictly dominate the lotteries associated with a1 and a2,

3

4
U(x3) +

1

4
U(x2) > U(x1); (��)

3

4
U(x3) +

1

4
U(x2) >

1

4
U(x3) +

3

4
U(x2): (� � �)

From (� � �) we can infer that U(x3) > U(x2), which combines with (��) to imply that U(x3) >

U(x1). Yet this does not allow us to make a direct inference on the preference as between pure

prizes x1 and x2. However, from (�) and (��), we can �nd two additional inequalities that place a

lower bound on the utility advantage of x3 over x2 and x1,

U(x3) > max

�
4U(x1)� U(x2)

3
;
4U(x2)� U(x1)

3

�
:
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The above inequalities are both necessary and su¢ cient for expected utilities to rationalize the

observed behavior in our model. They illustrate how the model enables us to restrict the relative

strength of preferences for one prize over another. This feature is general, as established in section

6.

4.1 Depth J � 2

If J � 2, recoverability can be achieved by combining standard revealed preference techniques with

probabilistic constraints such as those above. When one of the top J actions is picked, we can infer

that the actual prize it yields is known to the DM, so it must strictly dominate all prizes above it

in the list and weakly dominate all prizes seen below it on the list (up to the Jth position). This

implies that much can be inferred about pure prize preferences using standard revealed preference

techniques (as developed by Samuelson [1938] and Richter [1966]). Moreover, we can infer that the

chosen prize weakly dominates the uncertain prize lottery associated with each of the unexplored

positions.

To give a simple example, if all permutations are possible and the chosen action is always one of

the top J actions, then by standard revealed preference techniques the complete preference ordering

can be inferred over all prizes ever chosen, with the additional comment that all unchosen prizes

must be of strictly lower utility than any prize ever chosen. At the same time, the probabilistic

constraints shed light on the utility advantage of the chosen prizes over the unchosen prizes.

5 General Model

The �nite choice set X, �nite action set A, frame-generating mechanism � 2 �(F), and expected

utility function U : X �! R are key components of the general model. There are four additional

elements that we specify in this section: a subjective state space S; a set of perceptual

mappings � that map frames into simple lotteries over the subjective state space; a perceptual

cost function K that associates utility costs with these perceptual mappings; and a choice

function C that maps possible subjective states into action choices.

While it may seem non-standard for us to focus on subjective states in a model of framing

e¤ects, our approach aligns closely to standard models of Bayesian signal processing. With the
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assumption of rational expectations, we show below that one can e¤ectively interpret the model as

involving Bayesian signal processing on the part of the DM based on a set of subjectively observed

signals.

5.1 Subjective States

The set S comprises all subjective mental states of the DM. In general, S captures all information

that DMs extract from the choice environment and the speci�c frame in front of them. More

speci�cally, S may encode characteristics or facets of the available goods, the state of a �nite

automaton, etc. As in the Savage framework, this state is used to encapsulate the DM�s uncertainty

about the consequences of available choices.

As previewed in section 2, we set S = �(X)M , the space of ordered lists of M subjective prize

lotteries. Let smn be the probability that action choice am results in prize xn, so that,

S = fs 2 RMN
+ j

NX
n=1

smn = 1 for all m 2 f1; : : : ;Mgg:

The reason to so limit the subjective state space is that we model choice using expected utility

theory, for which lotteries over prizes are the appropriate objects of choice.

5.2 Perceptual Mappings and Rational Expectations

A perceptual mapping � links possible frames with lotteries over subjective states.

De�nition 2 A perceptual mapping is a function from F(�), the support of �, to �(S), the prob-

ability distributions over S with �nite support,

� : F(�)!�(S):

We let S(�) � S denote the support of �, noting that the �niteness of F(�) is inherited by S(�).

Note that in the list order example above, the perception function is deterministic because

search order is �xed and each position is searched fully. By allowing for stochasticity, we allow for

cases in which search takes place in a random order and for partial search of a position.
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Not all perceptual mappings are feasible in our model. We assume that expectations are rational,

so that perceptual states re�ect reality in a statistical sense. That is, given all the frames that could

have put the DM in a particular subjective state, the lottery associated with each action is correct

on average. In what follows, we treat rational expectations as a constraint on the perceptual

mapping.

De�nition 3 Given � 2 �(F), perceptual mapping � : F(�)!�(S) satis�es rational expecta-

tions if, for all m 2 f1; : : : ;Mg, n 2 f1; : : : ; Ng, and s 2 S(�),

smn =

P
ff2F(�)jf(am)=xng �(f)�

f (s)P
ff2F(�)g �(f)�

f (s)
:

We let �RE(�) denote the set of all perceptual mappings that satisfy rational expectations.

Figure 1 illustrates the restrictions implied by rational expectations in a 2�2�2 case (2 prizes,

2 actions, and 2 frames). The actions are a1;2, the prizes are x1;2, and the frames are f1;2. In frame

f1, a1 produces x1, and a2 produces x2. On the other hand, in frame f2, a1 produces x2, and a2

produces x1.

The decision tree provides a representation of all objective states of the world as well as the

subjective states of mind. The �rst set of nodes record the stochastic structure of the frame

generating mechanism �, while the subsequent set correspond to the stochastic structure of the

subjective states, s1 and s2. The subjective states are connected with dashed lines, which represent

the information sets of the DM. Each node has a black edge that goes to the action that is adopted,

action ai in state si, and also a grey edge corresponding to the untaken alternative action.

The �gure shows how rational expectations identify the states s1 and s2. Letting skij for k = 1; 2

denote the probability that action ai will produce prize xj in state sk, this condition can be stated

as,

sk11 = s
k
22 = 1� sk21 = 1� sk12 =

� (f1) � �f1(sk)
� (f1) � �f1(sk) + � (f2) � �f2(sk)

;

where �fi(sk) denotes the probability in frame fi that the subjective state will be sk. The �gure

illustrates that there is a natural interpretation of rational expectations as re�ecting some signal

process that is subjectively available to the DM. In that manner, one can view the DM as a classical

Bayesian.
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Figure 1: Decision Tree for DM

A non-standard feature of our model of framing e¤ects is that each subjective signal may

contain information on the prizes associated with both available actions. It is more standard to

model information as action speci�c, as in Bolton and Faure-Grimaud [2009], so that signals reveal

information on just one available prize at a time. Caplin and Martin [2012] develop a Bayesian

model of attentional e¤ort that incorporates the multi-faceted nature of subjective signals that our

model captures.

5.3 Perceptual Costs

In our optimizing framework, the perceptual mapping is chosen by the DM based on underlying

costs. For example, in the case of sequential list order search, the depth of search was determined

based on a search cost function that was separable from the utility function over prizes. Likewise,

Caplin and Martin [2012] solve for optimal attentional choice when there are separable costs of

attentional e¤ort and attention can improve the accuracy of perception. This same approach

can be adopted with great generality to solve for optimal perceptual strategies in a wide class

of models. To carry out this optimization, one must specify a cost function on a set of feasible

perceptual strategies. To simplify, we model perceptual costs in the general case as separable from
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prize utility and as having to be chosen ex ante, as in the case of batch search.6

In formal terms, the key additional model element is a perceptual cost function measured in

expected utility units,

K : �RE(�) �! R+:

As noted, we assume below that prize utilities and perceptual costs are separable, and that net

expected utility is the di¤erence between the expected prize utility and this psychic cost.

5.4 The Subjective Choice Function and Stochasticity

While the set S(�) serves as the natural domain of the subjective choice function given � 2 �RE(�),

it is important for the de�nition of perceptual optimality to allow for an unrestricted domain,

C : S �! A:

Note that the above formulation implies that choices are based solely on the state of uncertainty

at the moment of choice, not on the process of perception that generated that state.

Our assumption that the choice function is deterministic mirrors the literature on �nite au-

tomata (see Osborne and Rubinstein [1994], p.140). Thus, all randomness in choice behavior for

a given frame is due to stochasticity in perception (as in Sims [2003] and Woodford [2012]). Note

that this form of stochasticity is quite di¤erent than that produced in standard models in which

all randomness is placed in the utility function (see Luce [1959] and Block and Marschak [1960]).

The most famous axiom for such cases is Luce�s axiom, whereby the ratio of the probabilities of

choosing any one item over any other is independent of other �irrelevant�alternatives. While this

has been relaxed in many ways, most stochastic utility models place restrictions on the relative

probabilities of choosing one option over another across distinct choice sets. Restrictions of this

form will not apply in our model, since the utility function is �xed and the source of stochasticity

is incomplete comprehension of available options.

6Nothing changes in principle if one allows for sequential search. The complication is largely notational: one has

to build up the recursive machinery to de�ne the costs of perceptual strategies that are sequential in nature.
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5.5 Optimal Final Choice and Optimal Perception

Pulling together the above strands, note that the inputs to our framing model are sets X and

A, measure �, expected utility function U , and perceptual cost function K. A model of optimal

perception and choice then comprises a perceptual strategy �̂ 2 �RE(�) and a corresponding choice

function Ĉ : S �! A such that �nal choices are utility maximizing and the perceptual strategy

maximizes the di¤erence between expected prize utility and perceptual cost.

De�nition 4 A perceptual strategy �̂ 2 �RE(�) and choice function Ĉ : S �! A are optimal for

framing model (X;A; �;K;U) if they satisfy:

1. Perceptual Optimality,

�̂ 2 arg max
�2�RE(�)

24 X
f2F(�)

X
s2S

�(f)�f (s)U(Ĉ(s))�K(�)

35 :
2. Final Decision Optimality,

Ĉ(s) 2 arg max
1�m�M

NX
n=1

smnU(xn);

for all s 2 S.

After substitution for s based on rational expectations, this choice function bears a resemblance

to that in the Anscombe-Aumann framework (see Kreps [1988], p. 38 for an overview), but in our

case the probability of each prize in each state is generated through the frame.

Note that U(Ĉ(s)) is independent of which optimal action is selected. Hence the conditions

reduce to selecting the perceptual mapping to maximize net expected utility given rational expec-

tations. Given that �RE(�) is not in general �nite, continuity conditions are required to guarantee

existence.

6 Recoverability and Falsi�ability with Unobservable Perception

In the case of list order search, the mode of search and the associated costs were treated as known

to the model builder, so optimal perception was mechanically computed. Thus, how choice varies
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with optimal perception was directly observed. As a result, testing for consistency and recovering

consistent utility functions was straightforward. With the general model, we can adopt a broader

approach in which the form of perception and the associated costs are unknown to the model

builder, so that optimal perception cannot be determined. Thus, how choice varies with optimal

perception is no longer directly observable, and we are left with more unknowns to infer.

While perception is unobservable, there are general model elements that might be visible to

an idealized outside observer, such as an econometrician or experimental designer: the prize set;

the action set; the frame-generating mechanism; and the (possibly stochastic) actions chosen in

each frame. Given these elements, we pose two related questions. First, is our model of optimal

framing e¤ects vacuous, or does it in some manner restrict the nature of these e¤ects? Second,

we address the recoverability question of section 3 when perception is unobservable. One might

expect recoverability conditions to be more intricate in this case, given the relative paucity of data.

The main result of this section is that, to the contrary, the recoverability conditions are precisely

analogous to the conditions derived already in the case of list order search. Moreover, these same

conditions can be used to fully characterize the sense in which the general model is falsi�able.

6.1 The Ideal Data Set and Framing E¤ects

As indicated above, an ideal outside observer cannot condition action choices on a known perceptual

strategy, but can condition them on the observed frame. Given X, A, and � 2 �(F), an ideal

data set (IDS) P identi�es the probability distribution over action choices as it depends on the

frame,

P : F(�) �! �(A);

where F(�) � F is the support of �.7

This data set allows us to cleanly identify the existence of framing e¤ects. Technically, an IDS

exhibits a framing e¤ect if for any xn 2 X, there exists frames f; g 2 F(�) such that,

P f (fam 2 Ajf (am) = xng) 6= P g (fam 2 Ajg (am) = xng) ;

with the convention that P f (B) is the probability of action set B � A being chosen in frame f .
7The domain of this data does not allow the order of observations to be recorded, hence we will not consider

explanatory hypotheses that involve learning about the stochastic structure of the environment.

19



6.2 Optimal Framing Representation

Our recoverability question concerns whether and how one can rationalize in our model any par-

ticular set of observables (X;A; �; P ).

De�nition 5 (X;A; �; P ) has an optimal framing representation if there exists �K : �RE(�)!

R+; �U : X ! R, �� 2 �RE(�), and �C : S �! A, satisfying:

1. Data Matching: P f (am) = ��f ( �C�1(am)) for all f 2 F (�) and am 2 A.

2. Optimality: �� 2 �RE(�) and �C : S �! A are optimal for framing model (X;A; �; �K; �U).

3. Non-Triviality: there exists j; k 2 f1; : : : ;Mg and s 2 S(��) such that,

NX
n=1

sjnU(xn) >
NX
n=1

sknU(xn):

Condition 1 requires that together the perceptual mapping and the choice function explain the

observed data. Condition 2 requires that the perceptual mapping and choice function are optimally

chosen. Non-triviality prevents the conditions from being satis�ed by a utility function in which

all actions always yield identical utility.

6.3 The NIAS Lemma

The central characterization result is that a necessary and su¢ cient condition for an IDS to have

an optimal framing representation is that there exists a utility function such that, for any given

action, it is better not to switch to taking some �xed alternative action in all situations in which

that action was taken. To ensure non-triviality, the corresponding utility comparison must be strict

in at least one case.

We impose a simple regularity condition on the data (X;A; �; P ) before establishing this result.

Condition 1 (X;A; �; P ) is regular if:

1. There exist aj ; ak 2 A and f; g 2 F(�) such that min
�
P f (aj); P

g(ak)
�
> 0:
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2. Given aj ; ak 2 A such that min
�
P f (aj); P

g(ak)
�
> 0 for some f; g 2 F(�), there exists

m 2 f1; : : : ;Mg and n 2 f1; : : : ; Ng, such that,P
ff2Fjf(am)=xng �(f)P

f (aj)P
f2F �(f)P

f (aj)
6=
P
ff2Fjf(am)=xng �(f)P

f (ak)P
f2F �(f)P

f (ak)
:

The �rst regularity condition rules out the trivial case in which only one action is chosen. The

second rules out cases in which two distinct actions cause precisely the same rational updating on the

prize probabilities associated with all actions. With these assumptions, the following �No Improving

Actions Switches� (NIAS) Lemma establishes the precise observable restrictions associated with

existence of an optimal framing representation.

Lemma 1 (NIAS) Regular (X;A; �; P ) has an optimal framing representation if and only if there

exists U : X ! R satisfying the NIAS inequalities: for all j; k 2 f1; ::;Mg,X
f2F

�(f)P f (aj)U(f(aj)) �
X
f2F

�(f)P f (aj)U(f(ak));

with at least one inequality strict.

A proof of this Lemma can be found in the Appendix.

The real bite of this result is that the condition is necessary. The fact that the NIAS conditions

are su¢ cient for existence of an optimal framing representation is essentially immediate. Technically,

it follows if one identi�es a single subjective state with each action choice. However, one might

imagine that if there are many subjective states in which a given action is taken, then it might be

possible to correspondingly enrich the class of data sets consistent with the model. In fact this is

not so: no matter how one enriches the state space, one cannot expand the empirical reach of the

model.

6.4 NIAS and Framing E¤ects

The NIAS Lemma provides a complete characterization of all framing e¤ects that are consistent

with the model. It establishes that the optimal framing model has a simple general test, which

corresponds to non-emptiness of the feasible set for a linear program.8 The set of permissible
8Although not comparable because they are based on choices from budget constraints, Afriat [1967] similarly

provided a set of data-de�ned linear inequalities such that a solution to the inequalities exists if and only if a non-

satiated utility function exists that rationalizes the data.
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framing e¤ects is readily characterized in simple cases. Caplin and Martin [2011] provide a complete

analysis of the two prize, two action case, and illustrate the important role that the prior � plays in

determining how restrictive are these inequalities. As demonstrated in section 3, these inequalities

also provide a way to recover the set of utility functions in the presence of framing e¤ects.

7 What Does and Does Not the Model Cover?

While the NIAS Lemma provides a mathematical test of consistency with our general model of

framing e¤ects, it may not be immediate whether existing models of limited or incorrect perception

are consistent with our approach �in part because our separation of actions and prizes in framing

is novel, and in part because these models are rarely stated in terms of their falsi�able implications.

In this section, we examine a wide variety of models and see how they compare to our general

model.

7.1 Excluded Models: Optimal Choice Violated

In Salant and Rubinstein [2008] , DMs are modeled as searching the �rst J options according to

attentional ordering O and choosing the best option among those that have been observed, which

generates several framing e¤ects. Note that with this mode of behavior, the chosen object is always

among those that have been explicitly searched. The same feature of choosing always within the

searched set characterizes the alternative-based search model of Caplin and Dean [2011].

As a rule of behavior, choosing exclusively among the searched options can be inconsistent with

maximization of expected utility when expectations are rational. Hence it is not consistent with

our model. This is illustrated by example in section 3, in which identifying an item or items of low

value in a given search made it optimal in our model to choose outside the searched set. This is

quite general. If the prior � allows all prizes to be found anywhere in the list, and search happens

to reveal that the worst possible items are in the top J positions, any choice outside the searched

set will yield higher expected utility than does any searched option.
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7.2 Excluded Models: Rational Expectations Violated

There are many learning models in which beliefs never converge to rational expectations. For

example, Esponda [2008] develops a model in which beliefs are based only on information concerning

the choices that are actually made. Steiner and Stewart [2008] show how beliefs can be incorrect

due to the presence of contagion e¤ects. Schwartzstein [2012] models a continuous process of

learning based on partial attention where beliefs have persistent errors. As it stands, our model is

inconsistent with any such form of incomplete learning.

Settings in which rational expectations is most credible involve familiar environments in which

the DM has learned through a process of trial and error the results of any available action in any

perceptual state. As is often the case, this assumption is easiest to justify as the end result of an

unmodeled and unobserved process of experimentation which has now concluded.

7.3 Included Models: Strategic Analogs

Our framework can be interpreted as a one player game of incomplete information against nature.

Chance assigns the player a type t, which is composed of the frame the player faces and their

subjective state,

t = (f; s) 2 F (�)� S:

The player knows the joint likelihood of frames and subjective states and the actual subjective

state they are in, but not the frame they face, which is re�ected in the information sets presented

in �gure 1. The probability of being of type (f; s) given subjective state s is determined by Bayes�

rule,

Pr (f; s) =
�(f)�f (s)P

g2F(�) �(g)�
g (s)

:

Clearly, having a consistent belief system is analogous to holding rational expectations, and choices

in Bayesian Nash equilibrium are analogous to optimal choices in the corresponding optimal framing

representation.

Given this interpretation of the model, it is natural to develop strategic analogs of our model.

To some extent, this development is under way. In highly complementary work, Bergemann and

Morris [2011] establish that mutual NIAS inequalities characterize Bayesian Nash equilibria in a

natural strategic setting. While our approaches di¤er in that we treat the IDS as the primitive
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and they treat utility functions as the primitive, the fact that we derive analogous inequalities is

striking. Certainly it suggests that strategic models of framing based on imperfect perception may

be worth exploring.

Our framework also has a conceptual link to the fully cursed equilibrium of Eyster and Rabin

[2005]. Consider once again a player who knows the joint likelihoods and the subjective state

they are in, but not the frame they face. However, suppose that the player believes incorrectly that

frames create a stochastic action-prize mapping instead of a deterministic action-prize mapping, and

that for a given subjective state, this stochastic action-prize mapping is the same for all frames and

corresponds to the average chance of each action-prize being selected by nature. In this case, even

though a player has incorrect beliefs, they are never contradicted by reality. The constraint that

reality places on misperception in this example is similar to that produced by rational expectations

in our model. In fact these seemingly distinct formulations may not be separable in the data.

There are also conceptual similarities between our framework and the analogous thinking model

of Jehiel [2005]. Consider now a player who knows both the frame and their subjective state, but

who only keeps track of the average connection of actions to prizes in each subjective state, not the

actual connection of actions to prizes for each frame. This would be reasonable if there were too

many frames practically to track. In this example, choices in Jehiel�s model would be precisely as

in our model with incomplete perception of the frame.

7.4 Included Models: Rational Inattention

Rational expectations is a standard assumption in many models of rational inattention (e.g. Sims

[2003], Gabaix [2012], Woodford [2012]). In particular, Sims [2003] and Woodford [2012] allow for

randomness in perception, just as do we, and similarly insist that beliefs are updated appropriately

given the realized state of perception. While current models of rational inattention allow for a

richer underlying state of the world than do we in our analysis of framing e¤ects, they are more

restrictive in their treatment of perceptual costs. Rather than treating these as unobservable, this

literature makes strong assumptions on the perceptual cost function connected with the literature

on entropy.
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8 Concluding Remarks

We develop and apply an optimizing model that covers a wide variety of framing e¤ects. This

model can be used to study the long run impact of policy changes that impact the manner in

which options are presented. In order for policy makers to analyze how best to frame a given set

of options, they must be aware that their policy may change behavior by changing expectations

(Muth [1961] and Lucas [1972]). Our formulation is particularly suitable for such purposes since

it captures optimal responses to changes in expectations about the possible frames. Caplin and

Martin [2012] develop just such a model to capture the impact of various possible default policies.
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10 Appendix

NIAS Lemma: Regular (X;A; �; P ) has an optimal framing representation (OFR) if and only if

there exists U : X ! R satisfying the NIAS inequalities: for all j; k 2 f1; ::;Mg,

X
f2F

�(f)P f (aj)U(f(aj)) �
X
f2F

�(f)P f (aj)U(f(ak));

with at least one inequality strict.

Proof. Su¢ ciency: We pick �U : X ! [0; 1] satisfying the NIAS inequalities. We introduce a

speci�c subjective state �sj per action aj 2 A that is taken with strictly positive probability,

�sjmn =

P
ff2F(�)jf(am)=xng �(f)P

f (aj)P
ff2F(�)g �(f)P

f (aj)
;

and set,

��f (�sj) = P f (aj) > 0;

for each such state, and for all f 2 F(�). By regularity of (X;A; �; P ) note that there exist at least

two possible actions, aj and ak. Regularity also implies that for any two such actions there exist

m 2 f1; : : : ;Mg and n 2 f1; : : : ; Ng such that,P
ff2Fjf(am)=xng �(f)P

f (aj)P
f2F �(f)P

f (aj)
6=
P
ff2Fjf(am)=xng �(f)P

f (ak)P
f2F �(f)P

f (ak)
:

Hence the corresponding subjective states �sj and �sk are distinct, �sj 6= �sk, enabling us to de�ne

�C(�sj) = aj without ambiguity on s 2 S(��). We de�ne �C(s) on s 2 S=S(��) to be any utility

maximizing action. Finally, we de�ne the perceptual cost function K : �RE(�)! R+ to satisfy,

�K(�) =

8<: 1 if � = ��;

0 if � 6= ��:

Note that Data Matching holds by the de�nition of �C. That �� 2 �RE(�) follows from direct

substitution,

�sjmn =

P
ff2F(�)jf(am)=xng �(f)��

f (�sj)P
ff2F(�)g �(f)��

f (�sj)
;

for all m 2 f1; : : : ;Mg, n 2 f1; : : : ; Ng, and �sj 2 S(�). Perceptual Optimality follows since

the utility advantage assigned to �� over all alternative strategies exceeds the range of the utility

function.
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To establish Non-Triviality, select actions aj and ak for which the NIAS inequality is ever strict

for �U : X ! R. Substitution of ��f (�sj) = P f (aj) > 0 into the NIAS condition and re-organization

by prize reveals,

NX
n=1

X
ff2F(�)jf(aj)=xng

�(f)��f (�sj) �U(xn) >
NX
n=1

X
ff2F(�)jf(ak)=xng

�(f)��f (�sj) �U(xn):

Substitution in light of �� 2 �RE(�) reveals,
NX
n=1

�sjjn
�U(xn) >

NX
n=1

�sjkn
�U(xn);

as required. Precisely analogous logic with weak inequalities replacing the above strict inequalities

establishes Final Decision Optimality. Note that �sj 2 S(��) =) P f (aj) > 0, whereupon substitu-

tion of ��f (sj) = P f (aj) into the NIAS inequalities and reorganization by prize and substitution in

light of �� 2 �RE(�) reveals,
NX
n=1

�sjjn
�U(xn) �

NX
n=1

�sjkn
�U(xn);

for all j; k 2 f1; ::;Mg, as required.

Necessity: A direct review of the above logic shows that identifying a utility function that

satis�es the NIAS inequalities is not only su¢ cient for an OFR, but also necessary for an OFR in

which there is only one subjective state per action taken with strictly positive probability. The full

result follows from the observation that if we identify an OFR with more than one subjective state

for one or more action choices, then there must exist an OFR with only one subjective state for

each action choice: allowing for multiple states does not introduce new Ideal Data Sets which an

OFR exists.

Consider an arbitrary OFR ( ~K; ~C; ~U; ~�) of (X;A; �; P ). Given any action aj 2 A such that

P f (aj) > 0 some f 2 F(�), let Sj(~�) � S(~�) be the �nite set of possible states ~sj;p 2 S(~�) such

that,

~C(~sj;p) = aj ;

for 1 � p �
��Sj(~�)�� (all possible statesin which aj is chosen). Suppose now that set cardinalities are

such that
��Sj(~�)�� > 1 for some such j. To prove necessity, we de�ne a distinct OFR ( �K; �C; �U; ��)

of (X;A; �; P ) such that
��Sj(��)�� = 1 all such j.

The utility function is unchanged, �U = ~U . With regard to the states, given any action aj 2 A

such that P f (aj) > 0 some f 2 F(�), we de�ne a new subjective state, �sjmn, as the appropriately
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averaged version of the states in Sj(~�),

�sjmn =

PjSj(~�)j
p=1

P
ff2F(�)jf(am)=xng �(f)~�

f (~sj;p)PjSj(~�)j
p=1

P
ff2F(�)g �(f)~�

f (~sj;p)
:

In complementary fashion, de�ne �C(�sj) = aj and de�ne �� so that �sj is perceived in place of all ~sj;p,

��f
�
�sj
�
=

jSj(~�)jX
p=1

~�f (~sj;p);

all f 2 F(�). Again de�ne �C(s) on s 2 S=S(��) to be any utility maximizing action. Finally, de�ne

perceptual costs to satisfy,

�K(�) =

8<: 1 if � = ��;

0 if � 6= ��:

We now con�rm that ( �K; �C; �U; ��) provide an OFR of (X;A; �; P ). Note �rst that Data Match-

ing is satis�ed by construction. That �� 2 �RE(�) follows from rearranging summations and

substituting,

�sjmn =

P
ff2Fjf(am)=xng �(f)

PjSj(~�)j
p=1 ~�f (~sj;p)P

ff2Fg �(f)
PjSj(~�)j
p=1 ~�f (~sj;p)

=

P
ff2F(�)jf(am)=xng �(f)��

f (�sj)P
ff2F(�)g �(f)�

f (�sj)
;

for all m 2 f1; : : : ;Mg, n 2 f1; : : : ; Ng, and �sj 2 S(�). It is then immediate that Perceptual

Optimality is satis�ed.

Final Decision Optimality is established by noting that it survives under convex combinations.

To see this, select some state sj 2 S(��). Note from the construction that this implies that P f (aj) >

0 some f 2 F(�). Since ( ~K; ~C; ~U; ~�) form an OFR of (X;A; �; P ), this in turn implies that,

NX
n=1

~sj;pjn
�U(xn) �

NX
n=1

~sj;pkn
�U(xn);

for all k 2 f1; : : : ;Mg and 1 � p � Sj(~�). Substitution in light of rational expectations and

addition across p implies,

NX
n=1

jSj(~�)jX
p=1

X
ff2Fjf(aj)=xng

�(f)~�f (~sj;p) �U(xn) �
NX
n=1

jSj(~�)jX
p=1

X
ff2Fjf(ak)=xng

�(f)~�f (~sj;p) �U(xn):
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Upon substitution for �sj in terms of ~sj;p, this reduces to,

NX
n=1

�sjjn
�U(xn) �

NX
n=1

�sjkn
�U(xn),

for all f1; : : : ;Mg, establishing Final Decision Optimality.

Finally, we turn to non-triviality. Since ( ~K; ~C; ~U; ~�) form an OFR of (X;A; �; P ), we know that

there exists j; k 2 f1; : : : ;Mg and ~s 2 S(~�) such that,

NX
n=1

~sjn �U(xn) >
NX
n=1

~sjn �U(xn):

In light of Final Decision Optimality, it is WLOG to assume that ~s 2 Sj(~�). With this combined

with all other weak inequalities, we conclude in light of rational expectations that,

NX
n=1

jSj(~�)jX
p=1

X
ff2Fjf(aj)=xng

�(f)~�f (~sj;p) �U(xn) >
NX
n=1

jSj(~�)jX
p=1

X
ff2Fjf(ak)=xng

�(f)~�f (~sj;p) �U(xn):

At this point substitution as above for �sj in terms of ~sj;p reveals the desired strict inequality,

NX
n=1

�sjjn
�U(xn) >

NX
n=1

�sjkn
�U(xn):

32


