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Abstract
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which is shared across models of Bayesian learning, is that any learning must be ra-
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1 Introduction

Bayesian learning models form a bedrock of modern social science and are ubiquitous in eco-
nomic, psychological, and neuroscientific analysis. In these models, decision makers acquire
informative signals about the state, update their beliefs using Bayes’ rule, and then choose
an action that maximizes expected utility. This broad framework includes fixed information
models, where learning is not impacted by the decision context, such as in market models of
incomplete information, auctions, and observational learning; capacity constrained learning
models, where one of a feasible set of learning methods is chosen to maximize payoffs, such
as in fixed capacity rational inattention (Sims 2003) and optimal encoding (Woodford 2014);
and costly learning models, where distinct methods of learning have different costs and the
chosen method maximizes net payoffs, as in sequential search, bandit problems, and variable
capacity rational inattention (Matejka and McKay 2015; Caplin, Dean, and Leahy 2017).

A key component of all Bayesian learning models is the learning itself, which is repre-
sented by the decision maker’s information structure. However, in practice what a decision
maker learns is rarely observed directly. Instead, imagine an analyst who would like to infer
what the decision maker learned but only observes the following joint distribution over states
{ω1, ω2} and actions in respective choice sets A1 = {a1, a2} and A2 = {a1, a2, a3}:

P 1 =

ω1 ω2( )
0.4 0.1 a1

0.1 0.4 a2
and P 2 =

ω1 ω2
0.25 0 a1

0.05 0.2 a2

0.2 0.3 a3

Such state-dependent stochastic choice data has long been analyzed in psychology, neuro-
science, and economics, especially when studying models of Bayesian learning.1 In recent
theoretical advances, Caplin and Martin (2015), Caplin and Dean (2015), Chambers, Liu,
and Rehbeck (2017), Caplin, Dean, and Leahy (2017), and Denti (2022) use state-dependent
stochastic choice to characterize different forms of Bayesian learning, and Lipnowski and
Ravid (2022) use knowledge of learning costs to predict state-dependent stochastic choice.

The central question we address in this paper is: what can the analyst infer from such
choice data about what a decision maker has learned? The key constraint we impose, which

1In psychometric lab experiments, the state could be luminosity, weight, the direction of movement, or
other perceptual distinctions. For instance, the proportion of colored balls (Dean and Neligh 2017), the sum
of a numeric string (Martin 2016), or the shape of a geometric figure (Caplin, Csaba, Leahy, and Nov 2020).
An example from the field is whether a pitch is in or out of the strike zone (Bhattacharya and Howard
2022). For standard economic settings, the state could be the fundamentals of a stock or the characteristics
of a health plan (Brown and Jeon 2020). Rambachan (2021) provides econometric methods for dealing with
incomplete state-dependent stochastic choice data and applies them to judicial decisions.
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is shared across models of Bayesians learning, is that any learning must be consistent with
rational choice. In other words, the decision maker’s learning must be rationalizable.

Caplin and Dean (2015) identify a necessary condition for an information structure to
be rationalizable under Bayesian learning, which is that it is a mean preserving spread
of the least informative information structure consistent with the data. Their condition
is not sufficient because such an information structure can be so informative that utility
maximization is not satisfied, which we demonstrate in a simple example introduced in
Section 1.1. As a result, their condition cannot be used to identify all information structures
that are rationalizable under Bayesian learning.

We build on their contribution by providing the conditions that are both necessary and
sufficient for Bayesian learning to be rationalizable. We first establish these conditions for
choice data from a single decision problem. Here, our main result (Theorem 1) is that an
information structure is rationalizable if and only if it constitutes a mean and optimality
preserving spread (MOPS) of the least informative information structure consistent with the
data, which itself is readily revealed by the data. As the name suggests, our MOPS operation
refines the mean preserving spread of Blackwell (1953) to take account for optimality. That
is, it restricts attention to mean preserving spreads of posterior beliefs that also preserve
optimal choice. Thus, it specializes the standard informativeness order to precisely target
the optimality embedded in models of Bayesian learning. The value of this specialization
in our context is to provide a constructive characterization of all information structures
rationalizable within a given decision problem.

For data from multiple decision problems, the necessary and sufficient conditions for ra-
tionalizable learning depend on the particular model of Bayesian learning that is imposed,
and we consider three nested possibilities: fixed information, capacity constrained learning,
and costly learning. For costly learning, the most general form of Bayesian learning we
consider, we accommodate the additional constraints on rationalizable learning that arise
across decision problems by complementing MOPS with an approach grounded in the value
of information. Here, our main result (Theorem 2) is that a set of information structures is
rationalizable under costly learning if and only if (1) each is a MOPS of the least informative
information structure consistent with the data from a given decision problem and (2) as a
collection they satisfy a Generalized No Improving Cycles (G-NIC) condition, which general-
izes the NIAC (Caplin and Dean 2015) and NIAS (Caplin and Martin 2015) conditions as a
function of arbitrary information structures. The G-NIC condition is compactly summarized
using the indirect value difference function, which is a matrix-valued function that builds on
the classic revealed preference approach of Varian (1982).

We also identify what could have been learned under capacity constrained learning
(Proposition 2) and fixed information (Proposition 3) by strengthening the indirect value
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difference function and MOPS requirements to generate necessary and sufficient conditions
for rationalizable learning under these models of Bayesian learning. Our results indicate that
identification of learning is strengthened with assumptions on the form of Bayesian learning
because doing so adds requirements on optimality across decision problems.

A related work is by Lu (2016), who identifies the set of possible information structures
for fixed information, the most restrictive form of Bayesian learning we consider. We ex-
pand on his contribution by also showing how to identify rationalizing information structures
under two common generalizations of fixed information: capacity constrained learning and
costly learning. This expansion is needed when learning is impacted by the decision-making
environment, such as when an increase in the variance in payoffs increases how much the
decision maker chooses to learn (as suggested by the second experiment of Dean and Neligh
2017). We further expand on his contribution by showing how to identify rationalizing infor-
mation structures when utility functions are unknown and must be inferred from choice data.
Finally, we complement his contribution by showing what can be inferred about rational-
izable learning from finite sets of state-dependent stochastic choice, a data set increasingly
used in the theoretical literature on costly learning (e.g., Caplin and Martin 2015, Caplin
and Dean 2015, Chambers, Liu, and Rehbeck 2017, Caplin, Dean, and Leahy 2017, Denti
2022, Lipnowski and Ravid 2022).2

Our paper makes two additional contributions related to the testability of Bayesian learn-
ing models. First, we show that a simple condition on the indirect value difference function
provides a test of capacity constrained learning, and to the best of our knowledge, this is the
first general test of this important model class, which includes fixed capacity rational inat-
tention and optimal encoding. For instance, the state-dependent stochastic choice data from
the second experiment of Dean and Neligh (2017), in which subjects make fewer mistakes as
the level of payoffs increases, do not satisfy our test of capacity constrained learning. This
means that neither fixed capacity rational inattention nor optimal encoding can rationalize
subject behavior in the perceptual task they consider.

Second, we show that the indirect value difference function helps operationalize the test
of costly learning established in Caplin and Dean (2015) because a simple condition on that
function is equivalent to their test, and the output of the function can be efficiently computed
using the polynomial-time algorithm of Floyd (1962) and Warshall (1962). This simple and
well-known algorithm is often used in revealed preference testing to calculate the transitive
closure of a revealed preference relation.

Our paper also makes contributions related to the recovery of two other key objects in
Bayesian learning models: learning costs and utility. Caplin and Dean (2015) provide linear

2Instead, Lu (2016) shows what can be recovered about information structures under fixed information
using “test functions” that are generated over all possible payoffs.
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constraints that must be satisfied for learning costs to be consistent with the data, and
in Subsection 5.1 we complement their result by showing that the indirect value difference
function can also be used to recover all possible information costs that rationalize what was
learned (Theorem 3). We further add to this by showing that the function also explicitly
encodes a variety of extremal learning costs, which in turn define a single representative cost
function of what was learned (Proposition 1). This representative cost is both “central” and
easy to calculate, two properties that could be helpful for empirical analysis.3

In addition, we show how to recover all consistent utility functions by generating utility
cones in the space of prize lotteries (Subsection 5.3). This extends the geometric approach to
recovering utility introduced in Caplin and Martin (2021). While they use this approach to
recover all consistent utility functions all utility under Bayesian expected utility maximiza-
tion, our expansion covers models of Bayesian learning that place restrictions of the form
of optimal learning, such as costly learning and capacity constrained learning. As a result,
our utility cones enable welfare analysis across a wide set of Bayesian learning models. For
instance, they could be used to order the value of information between methods of presenting
information that vary the costs of learning, such as by varying the level of complexity (e.g.,
Jin, Luca, and Martin 2018).

The paper proceeds as follows. In Section 1.1 we provide a motivating example which
we use to set ideas throughout the paper. In Section 2 we formalize the decision problem
and introduce the key objects of analysis. In Section 3 we introduce MOPS and consider
rationalizable learning within a decision problem. In Section 4 we introduce the indirect
value difference function and consider rationalizable learning with choice data from multiple
decision problems. In Section 5, we recover the costs of what was learned (Subsection 5.1),
characterize rationalizable learning under nested models (Subsection 5.2), and recover all
consistent utility functions (Subsection 5.3).

1.1 A Motivating Example

To illustrate the challenge of recovering information structures from choice data, consider
again the example data sets introduced previously. Two choice sets are faced: A1 = {a1, a2}
and A2 = {a1, a2, a3}. Choice data P 1 from the first choice set is summarized by:

P 1 =

ω1 ω2( )
0.4 0.1 a1

0.1 0.4 a2

3This complements the representative cost function established by Denti (2022), which is the minimal
cost consistent with the choice data under posterior-separability, a specialization of costly learning.
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Clearly, this exhibits symmetric choice patterns. The choice data P 2 observed from the
second choice set is somewhat asymmetric:

P 2 =

ω1 ω2
0.25 0 a1

0.05 0.2 a2

0.2 0.3 a3

In the first state, the first and third actions are selected more often, and in the second state,
the second and third actions are selected more often. Further, these actions can yield one of
three prizes {zG, zM , zB}, which are known to correspond to actions and states as follows:

Action State ω1 State ω2

a1 zG zB

a2 zB zG

a3 zM zM

What does the choice data reveal about learning? First, as detailed in Caplin and Dean
(2015), the revealed information structures for the data are always consistent with the data
under costly learning. Revealed information structures are the distributions of posteriors
for each choice set derived as if each action in the choice data had been chosen at a single
posterior, as in action recommendation strategies. Each data set P 1 and P 2 corresponds to
a revealed information structure Q̄1 and Q̄2, which is summarized by revealed posteriors γ̄

of state ω1 and probabilities of posteriors given by Q̄(γ):

γ̄ Q̄1(γ̄)( )
4/5 1/2

1/5 1/2

γ̄ Q̄2(γ̄)
1 1/4

1/5 1/4

2/5 1/2

One possibility is that these revealed information structures are in fact the information
structures of the decision maker. However, this is not necessary, nor is it consistent with the
decision maker having fixed information.

Alternatively, consider the following three candidate information structures:

γ Q(γ)
1 3/10

1/2 2/5

0 3/10

γ Q(γ)
1 3/10

1/2 3/10

1/8 2/5

γ Q(γ)
1 1/4

3/5 1/4

1/5 1/2
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Which of these information structures are consistent with the observed data? Our methods
will clarify the following. The first information structure is rationalizable as a MOPS of Q̄1

but inconsistent with costly learning because it is too informative not to have been chosen in
decision problem 2. The second information structure is rationalizable for decision problem
1 under costly learning but not under the more stringent model of capacity constrained
learning. The third information structure is consistent not just with capacity constraints,
but even with the very demanding fixed information model. In fact, it is the least informative
such structure consistent with the data under fixed information. In the remainder of the
paper, we show exactly how to identify information structures, both in this example and in
the general case.

2 Setup

There is a finite set of possible states of the world ω ∈ Ω and a fixed prior µ ∈ ∆(Ω). There
is a finite global set of actions A. There is a finite prize set Z = {zk}K

k=1. In any given
decision problem, a finite set of actions A ⊂ A with |A| ≥ 2 is available. For each action,
the prize that is realized depends on the state of the world according to a prize specification
z(a, ω) that is known by the analyst. Because rewards depend on the state, the decision
maker (DM) is motivated to learn about the state before making action choices.

2.1 Data

As in Caplin and Martin (2015) (CM15 hereafter), the data relevant to assessing what the
DM learns before choosing in decision problem A ⊂ A is state-dependent stochastic choice
(SDSC) data. This specifies the joint distribution of actions and states P (a, ω) for all a ∈ A

and ω ∈ Ω, with marginal distributions recovering the fixed prior and unconditional action
probabilities:

µ(ω) =
∑
a∈A

P (a, ω),

P (a) ≡
∑
ω∈Ω

P (a, ω);

Alternatively, the SDSC data is equivalently represented by a revealed information structure
Q̄, defined as the distribution over action-conditional posterior beliefs:

γ̄a(ω) ≡ P (a, ω)/P (a). (1)

for all chosen actions, P (a) > 0. When ambiguities exist, our convention throughout the
paper is to distinguish revealed data objects from their theoretical counterparts with a bar.
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2.2 Consistency with Bayesian Learning

Our main goal is to characterize which information structures are consistent with the ob-
served data P under Bayesian learning. As in Kamenica and Gentzkow (2011), we specify
an information structure as a Bayes consistent distribution Q of posteriors γ ∈ ∆(Ω) with
finite support Γ(Q) ≡ supp Q, with their set given by:

Q ≡ {Q ∈ ∆(∆(Ω)) with |Γ(Q)| < ∞ and
∑

γ∈Γ(Q)
γQ(γ) = µ}.

The DM has a mixed strategy over actions that is a function of the posterior, q(a|γ) ∈ ∆(A).
To help determine consistency, we define P(Q,q) as the hypothetical SDSC that (Q, q) would
generate,

P(Q,q)(a, ω) ≡
∑

γ∈Γ(Q)
q(a|γ)Q(γ)γ(ω). (2)

Thus, (Q, q) could have generated the data P if:

P(Q,q) = P (3)

We will say that (Q, q) rationalizes the data if it could have generated the data and could
have arisen from optimal choice.

We model the DM’s optimization problem in two stages, which we solve using backward
induction. In the second stage, given an information structure Q and decision problem A,
the DM chooses an action strategy to maximize expected utility. To this end, define the
posterior expected utility of action a given a utility function u : Z → R and a posterior γ

as:
U(a|γ, u) ≡

∑
ω∈Ω

γ(ω)u(z(a, ω)) (4)

and the gross expected utility of strategy (Q, q) given utility function u as:

g(Q, q|u) ≡
∑

γ∈Γ(Q)

∑
a∈A

Q(γ)q(a|γ)U(a|γ, u). (5)

As a function of information structure Q and choice set A the DM chooses an action strategy
to solve:

argmax
q:Γ(Q)→∆(A)

g(Q, q|u) (6)

In what follows, it will also be useful to define the resulting gross value of learning an
information structure Q in decision problem A given utility function u as:

G(Q|A, u) ≡ max
q:Γ(Q)→∆(A)

g(Q, q|u) (7)
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In the first stage, the DM chooses an information structure to maximize this value of learning
function minus a learning cost, which we summarize by a function K : Q → R ∪ {∞} as in
CD15. That is, the DM chooses a learning strategy to solve:

argmax
Q∈Q

G(Q|A, u) − K(Q) (8)

While we model the information structure as chosen, this general structure nests all of
the models considered in this paper. Capacity constrained learning is captured by the cost of
an information structure being either 0 or ∞, and fixed information is captured by the cost
of only one information structure being finite, so that the choice of information structure is
trivial.

3 Rationalizing Within Decision Problem

We begin by considering what could have been learned in a single decision problem sum-
marized by a choice set A and observed choice data P . Specifically, we are interested in
characterizing the set of information structures Q for which there exists a mixed action
strategy q satisfying expected utility maximization (6) such that (Q, q) generates the ob-
served data (3). In this case we say that the strategy rationalizes the data within decision
problem (according to expected utility maximization).

Throughout the following sections, we take as given a prize utility function. In Subsection
5.3 we consider the case where the utility function is unknown and must itself be recovered
from the available data. In the case of our running example, the resulting characterization
yields simple bounds, which we henceforth take as given:

u(zB) = 0, u(zM) ∈ [0.6, 0.8], u(zG) = 1 (9)

3.1 Mean and Optimality Preserving Spreads

The centerpiece of our characterization of what could have been learned under expected
utility maximization in a single decision problem is what we term a mean and optimality
preserving spread. To relate the standard concept of a mean preserving spread to optimality,
we use the fact that every action a maps to a single revealed posterior γ̄a. Additionally, we
define a shorthand for the set of posteriors γ ∈ ∆(Ω) at which each action a ∈ A is optimal:

Γ̂(a|A, u) ≡ {γ ∈ ∆(Ω) | U(a|γ, u) ≥ U(b|γ, u) for all b ∈ A}

Then our definition of a mean and optimality preserving spread (MOPS) is as follows.
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Definition 1. Given decision problem A and utility function u, information structure Q is
a mean and optimality preserving spread (MOPS) of revealed information structure
Q̄ if there exists a transition matrix B : Γ(Q) × Γ(Q̄) → [0, 1], denoted B(γ|γ̄) for target
posterior γ ∈ Γ(Q) and source posterior γ̄ ∈ Γ(Q̄), satisfying the standard conditions of a
mean preserving spread: ∑

γ∈Γ(Q)
B(γ|γ̄) = 1 (10)

∑
γ̄∈Γ(Q̄)

Q̄(γ̄)B(γ|γ̄) = Q(γ) (11)

∑
γ∈Γ(Q)

γB(γ|γ̄) = γ̄ (12)

while additionally preserving optimality:

B(γ|γ̄a) > 0 =⇒ γ ∈ Γ̂(a|A, u) (13)

for all chosen actions P (a) > 0.

As is standard, the first condition (10) requires that for every posterior γ̄ ∈ Γ(Q̄), B(·|γ̄)
is a probability distribution over Γ(Q). The second condition (11) requires that for every
posterior γ ∈ Γ(Q), the probability Q(γ) is obtained as the sum of spread mass from the
posteriors γ̄. The third condition (12) requires that the posteriors γ̄ ∈ Γ(Q̄) are an average
of posteriors in Γ(Q). Finally, condition (13) requires the spreading of revealed posteriors to
preserve optimality of the corresponding actions.

A MOPS provides a simple way of generating information structures from the revealed
information structure by spreading mass from revealed posteriors in a way that preserves
optimality of their associated actions. The following result establishes its equivalence with
the set of information structures that rationalize the observed data, and thus could have
been learned.

Theorem 1. Fix a decision problem with data (A, P ) and revealed information structure Q̄.
Given utility function u, the following are equivalent for an information structure Q:

1. There exists an optimal action strategy q such that (Q, q) rationalizes the data P ac-
cording to EU maximization.

2. The information structure Q is a mean and optimality preserving spread of Q̄.

We now illustrate the logic and value of the MOPS construction in each of the two decision
problems (A1, P 1) and (A2, P 2) of our running example. Applying the result to characterize
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possible learning above and beyond the revealed information structure generally requires
specifying the utility function u, which by the subsequent characterization (9) of Section 5.3
reduces to picking a scalar u(zM) ∈ [0.6, 0.8] with the normalization that u(zB) = 0 and
u(zG) = 1. However, the characterization of possible learning in the first decision problem
A1 is independent of this value u(zM) because the corresponding prize zM is never realized
under actions a1 and a2. Given that only actions a1, a2 are available in A1, the key sets of
posteriors at which each action is optimal are given by:

Γ̂(a1|A1) = [0.5, 1];
Γ̂(a2|A1) = [0, 0.5].

Theorem 1 states that an information structure can rationalize the data in decision problem
1 if and only if it can be obtained by spreading the revealed posteriors across posteriors
that preserve optimality at each associated action. More specifically, the posteriors that a
transition matrix B permits from revealed posterior γ̄a1 = 0.8 must all preserve optimality of
a1, hence be in the range [0.5, 1.0], while those permitted from revealed posterior γ̄a2 = 0.2
must all preserve optimality of a2, hence be in the range [0, 0.5].

Figure 1 illustrates such a construction for an information structure Q1 defined as:

γ Q1(γ)
1 3/10

1/2 2/5

0 3/10

(14)

This information structure can be recovered as a MOPS of the revealed information structure
Q̄1 by a mean and optimality preserving spread from the revealed posterior .8 of action a1

to (optimality-preserving) posteriors .5 and 1, and from revealed posterior .2 of action a2 to
posteriors 0 and .5, with weights such that each revealed posterior is also preserved. Note
that the spread involves mass from each revealed posterior on posterior .5, at which both
actions a1 and a2 are optimal. Conversely, the MOPS construction guarantees an optimal
action strategy such that data P 1 is rationalized by Q1. In particular, the action strategy is
mixed at revealed posterior .5, where again both actions are optimal.

The key distinction in decision problem A2 is that feasible learning depends on the utility
function, specifically the parameter u(zM), through the sets of posteriors inducing optimal
actions:

Γ̂(a1|A2, u) = [u(zM), 1];
Γ̂(a3|A2, u) = [1 − u(zM), u(zM)];
Γ̂(a2|A2, u) = [0, 1 − u(zM)].
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.5

0

a1

a2

.3

.4

.3

1

.5

.5

1

Q1(γ) γ(ω1) q(a|γ)

.8

.2

1

.5

0

.5

.5

.6

.4

.4

.6

Q̄1(γ̄) γ̄(ω1) B(γ|γ̄) γ(ω1)

Figure 1: Rationalizing (left) and MOPS (right) constructions of an information structure Q1

from the distribution of revealed posteriors Q̄1. Given (inferred) prize utilities u(zB) = 0 and
u(zG) = 1, action a1 is preferred to a2 for posteriors γ(ω1) ≥ 0.5, and action a2 is preferred
to a1 for posteriors γ(ω1) ≤ 0.5. The rationalizing action strategy q(a|γ) is consistent with
these preferences. Conversely, the corresponding MOPS matrix B spreads from revealed
posteriors γ̄a1 = 0.8 and γ̄a2 = 0.2 to other posteriors where the optimality of the respective
actions is preserved.

Thus, an information structure may be feasible only for a subset of utility functions consistent
with the choice model. This point is perhaps even more apparent upon characterizing what
could have been learned in terms of its informational value.

3.2 The (Limited) Value of Information

We now briefly consider a simple alternative characterization of what could have been learned
in terms of the information value. The value-based characterization will be especially useful
when we consider what could have been learned with additional restrictions across multiple
decision problems in Section 4. Following Blackwell (1951), we say for information structures
Q, Q̄ ∈ Q that Q is as (Blackwell) informative as Q̄, denoted Q ⪰ Q̄, if:

G(Q|A, u) ≥ G(Q̄|A, u) ∀ u : A × Ω → R.4 (15)

For a given utility function u, define the revealed gross utility as:

Ḡ(u) ≡
∑
a∈A

∑
ω∈Ω

u(z(a, ω))P (a, ω) (16)

Analogously to Theorem 1, we then have the following lemma, which will underlie our
approach to characterizing learning across decision problems in Section 4.

4Note this specification of utility u is consistent with our prize-based definition when z(a, ω) ≡ (a, ω).
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Lemma 1. Fix a decision problem with data (A, P ) and revealed information structure Q̄.
Given utility function u, the following are equivalent for an information structure Q:

1. There exists an optimal action strategy q such that (Q, q) rationalizes the data P ac-
cording to EU maximization.

2. The information structure Q is as informative as the revealed information structure Q̄

and yields maximal gross utility equal to what is revealed:

G(Q|A, u) = Ḡ(u) (17)

Intuitively, condition (17) results from the combination of two binding inequalities. First is
that the maximal gross utility at the revealed information structure is at least as high as the
revealed gross utility:

G(Q̄|A, u) ≥ Ḡ(u)

with equality if and only if the data satisfies the No Improving Action Switch (NIAS) condi-
tion of CM15. Second is that the maximal gross utility of what is learned is at least as high
as what is revealed:

G(Q|A, u) ≥ G(Q̄|A, u)

by the ranking of Blackwell informativeness, with equality when the information structures
are equally valuable in the decision problem A. Interesting subtleties in the value-based
characterization will arise in the following Section 4 when we consider learning inferred from
richer data encompassing more than one decision problem. In particular, what is learned
within one decision problem may be relatively more valuable in another decision problem,
which imposes significant additional constraints.

4 Rationalizing Across Decision Problems

We now consider what could have been learned across a finite set of M > 1 decision problems
consisting of action sets A ≡ (A1, . . . , AM) and generating corresponding SDSC data P ≡
(P 1, . . . , P M), which can be equivalently represented as corresponding revealed information
structures Q̄ ≡ (Q̄1, . . . , Q̄M). Such richer choice data allow us to test and estimate models of
learning, which additionally impose structure on the acquisition of information. Furthermore,
such models combined with richer data impose constraints on what could have been learned.

We begin by characterizing the tuple of information structures Q ≡ (Q1, . . . , QM) for
which there exist respective mixed action strategies q ≡ (q1, . . . , qM) satisfying expected
utility maximization as in (6) and generating the observed data sets as in (3), and for which
there exists a single cost function K : Q → R ∪ {∞} such that the choice of information
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is optimal according to (8). In this case we say that the action strategies (Q, q) rationalize
the observed data P according to costly learning, and that Q is a viable tuple of what could
have been learned.

4.1 Costly Learning and the Indirect Value Difference Function

To motivate our approach to characterizing what could have been learned in multiple decision
problems, consider again the information structure Q1 defined previously in (14). As shown
in Figure 1, this information structure is a MOPS of the revealed information structure
Q̄1 and is thus consistent with expected utility maximization in decision problem 1. Yet, a
model of information acquisition such as (8) imposes additional constraints on learning across
decision problems. We now ask: could this information structure still have been learned in
decision problem 1 under costly learning given the data (A2, P 2) observed in decision problem
2?

The answer is no because Q1 is too valuable to rationalize what was (not) learned in
decision problem 2. Consider first the revealed value of what was learned in each decision
problem. By Lemma 1, the definition (16), and the utility bounds (9), we can compute the
gross utility for any learned information structures Q1 and Q2 in respective decision problems
1 and 2 as:

G(Q1|A1, u) = Ḡ1(u) = 0.8
G(Q2|A2, u) = Ḡ2(u) = 0.45 + 0.5u(zM).

Given a specification (14) for information structure Q1, we can also compute its gross value
in choice set A2:

G(Q1|A2, u) = 0.6 + 0.4u(zM)

Finally, the gross value of learning Q2 in decision problem A1 is bounded below by the value
of the revealed information structure Q̄2 by the Blackwell informativeness order (Lemma 1):

G(Q2|A1, u) ≥ G(Q̄2|A1, u) = 0.75

Next, consider the sum of revealed and counterfactual gross utilities when learning across
the decision problems is switched. The sum of gross utilities revealed within decision problem
is:

G(Q1|A1, u) + G(Q2|A2, u) = 1.25 + 0.5u(zM)

Analogously, the sum of counterfactual gross utilities from switching learning across decision
problems is:

G(Q2|A1, u) + G(Q1|A2, u) ≥ 1.35 + 0.4u(zM)
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It follows that the sum of counterfactual gross utilities from switching learning across decision
problems exceeds the sum of revealed gross utilities for all possible u(zM) ∈ [0.6, 0.8].5

This violates the costly learning model by a similar logic to CD15: a cycle of learning
across decision problems is always feasible and furthermore holds fixed the sum of learning
costs across decision problems. Thus, information Q1 could not have been learned in decision
problem 1 in conjunction with the data observed in decision problem 2. Unlike CD15,
however, this is not a statement about model testability, but rather about what could have
been learned. In particular, the observed data remains consistent with a costly learning
representation.

We now introduce the indirect value difference function for summarizing these rich re-
strictions on learning in a simple, computationally tractable matrix form. To this end, we
first define the (direct) value difference between the value of learning Q and the revealed
gross utility in decision problem m:

Dm
0 (Q|u) ≡ G(Q|Am, u) − Ḡm(u), (18)

Note that we now index decision-problem-specific objects by their decision problem m. By
Proposition 1, a necessary condition for an information structure Qm to be rationalizable
within decision problem m is that Dm

0 (Qm|u) = 0.

The value difference construction becomes eminently useful in summarizing the rich coun-
terfactual attention strategies that must be considered across decision problems. To this
end, we formalize the notion of an attention path and cycle. An attention path h⃗ of edge
length 1 ≤ J (⃗h) ≤ M is a vector of decision problem indices h⃗ = (h1, h2, . . . , hJ (⃗h)+1), with
1 ≤ hj ≤ M and with the first J (⃗h) entries unique. An attention cycle is an attention path
where the first and last entries coincide: hJ (⃗h)+1 = h1. For arbitrary decision problem indices
1 ≤ m, n ≤ M , let:

H(m, n) ≡ {h⃗ ∈ H|h1 = m, hJ (⃗h)+1 = n}

denote the subset of attention paths that start at m and end at n. Maximizing the sum of
direct value differences across each set of attention paths H(m, n) for 1 ≤ m, n ≤ M then
yields the central object of our method of information recovery, an M × M matrix for each
set of information structures that we call the indirect value difference function. Evaluated
at a point, we also refer to this object as the indirect value difference matrix.

Definition 2. Given utility function u, the indirect value difference function D(Q|u)
is, for each set of information structures Q ∈ QM , an M × M matrix defined element-wise
as:

Dmn(Q|u) ≡ max
h⃗∈H(m,n)

J (⃗h)∑
j=1

Dhj

0 (Qhj+1 | u) (19)

5Specifically, as long as u(zM ) < 1.
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Intuitively, the indirect value difference function sums up the changes in maximized expected
utility along a path in which each decision problem Ahj is shifted to attention strategy Qhj+1

corresponding to one higher index, with subsequent re-optimization of actions.

The indirect value difference function reflects a strong analogy with revealed preference
theory — specifically, with the problem of computing the transitive closure of a revealed
preference relation in order to test whether a finite set of price and choice data are consis-
tent with utility maximization (Afriat 1967, Varian 1982). Two key differences stem from
the richness and observability of choices in our informational setting. First, our counterfac-
tual comparisons involve switching attention choices between action sets and re-optimizing
actions. Second, the choice of attention is only partially identified by the action choice data,
which requires generalizing the value difference matrices as functions of imperfectly observed
learning. Nevertheless, as in Varian (1982), we can employ the Floyd-Warshall algorithm
(Floyd 1962, Warshall 1962) to compute the indirect value difference matrix for a given set
of information structures in polynomial time; further details are provided in Appendix B.

For a set of information structures to have been learned across decision problems, it is
necessary that any such sum of value differences across an attention cycle be non-positive.
The maximal sum of such changes is also non-negative, since the identity attention cycle
mapping each information structure to its original decision problem is feasible. This yields a
necessary condition, captured by the diagonal entries of the indirect value difference matrix,
that we refer to as Generalized No Improving Cycles (G-NIC):

diag(D(Q|u)) = 0 (G-NIC)

where diag(·) denotes the operator recovering the main diagonal entries of a square matrix.
Fundamentally, (G-NIC) resembles the No Improving Attention Cycle (NIAC) condition of
CD15, but generalized in two ways. First, it is a function of an arbitrary set of information
structures Q. Second, by including edges to and from the same node and computing value
differences relative to the revealed gross utility Ḡm(u) rather than the gross utility at revealed
information G(Q̄m|Am, u), the condition (combined with Blackwell informativeness) also
subsumes the within-decision-problem value constraints required by Lemma 1, including the
No Improving Action Switches (NIAS) condition of CM15 and the within-problem MOPS
property of Theorem 1.

Since all information structures not chosen in some decision problem could simply be
infeasible without further assumptions, this condition becomes jointly sufficient for char-
acterizing what could have been learned once combined with the informativeness condition
required for an expected utility rationalization within decision problem. The following result
summarizes the characterization of what could have been learned across decision problems.

Theorem 2. Fix a set of decision problems with data (A, P) and corresponding revealed
information structures Q̄. For a given utility function u, the following are equivalent:
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1. There exists a learning cost function K and action strategies q such that (Q, q) ratio-
nalizes the data sets P according to costly learning.

2. The information structures Q satisfy (G-NIC) and are each as Blackwell informative
as their revealed counterparts Q̄.

A feature of the value difference characterization of Theorem 2 is that it circumvents the
need to specify a rationalizing action strategy q. Still, the proof of rationalization requires
such a construction, which follows by Lemma 1. We show in the following Section 5 how
the indirect value difference function also encodes valuable information about the possible
learning costs and the nature of learning.

5 Rationalizing Learning

We now consider the question of why a set of candidate information structures Q could have
been learned. We explore this question in three complementary ways. First, in Subsection
5.1, we derive the identified set of all information cost functions that rationalize such learn-
ing. Second, in Subsection 5.2, we further elucidate the nature of learning by considering
consistency with two important nested classes of the costly learning model, namely capacity
constrained learning and fixed information. In each case, we emphasize the importance of
our value difference and MOPS constructions. Finally, in Subsection 5.3 we recover the set
of possible utility functions for applications in which this is not known.

5.1 Costs of Learning

We begin with recovery of learning costs as a function of a utility function u and learned
information structures Q. For each such combination, we derive the identified set of all cost
functions K : Q → R ∪ {∞} that rationalize the data. This includes costing both what was
and was not learned.

Theorem 3. Given a utility function u and a rationalizable tuple of what was learned Q =
(Q1, . . . , QM), the sharp identified set of learning cost functions consists of cost functions
that rationalize what was learned:

K(Qn) − K(Qm) ≥ Dmn(Q|u) (20)

and rationalize what was not learned:

K(Q) ≥ max
1≤m≤M

[Dm
0 (Q|u) + K(Qm)]. (21)

for all 1 ≤ m, n, ≤ M and Q ∈ Q.
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The first condition (20) characterizes the learning cost function evaluated at what was
learned. In particular, this condition is necessary and sufficient for what was learned in
each decision problem to have been optimal, relative to what was learned in other decision
problems. The second condition (21) places lower bounds on the cost of what was not learned
to ensure suboptimality relative to what was learned.

Theorem 3 extends the related cost recovery of CD15 in several ways. First, it recovers
the sharp identified set of costs conditional on any combination of information structures
Q that could have been learned across decision problems, rather than only the sharp set
corresponding to the revealed information structures Q̄. Note, however, that the bounds
corresponding to the revealed information structures Q̄ nest those of any information struc-
tures Q that could have been learned because the bounding indirect value difference function
is increasing in the (element-wise) informativeness of its information structures (Lemma 4):

D(Q|u) ≥ D(Q̄|u).

Thus, the bounds for the revealed information structures remain valid for candidate learned
information structures but may cease to be sharp conditioning on what was learned. In
the following Subsection 5.2, for example, the unconditional bounds would typically be
insufficient for determining which (if any) information structures could have been learned
in nested variants of the model. Second, Theorem 3 also characterizes the possible cost
functions on the remainder of their domain.

Perhaps most importantly, however, the characterization of Theorem 3 highlights the
centrality of our indirect value difference function D(Q|u). This object operationalizes the
literature through the computational simplicity of the underlying matrix calculations using
the Floyd-Warshall algorithm, as described in Appendix B. Additionally, the indirect value
difference function itself encodes a variety of cost functions, including a representative cost
function, on the domain of what was learned. In order to succinctly state these results, let
KM(Q, u) ⊆ RM denote the set of rationalizing cost functions restricted to the domain of
what was learned and expressed as a vector superscripted by decision problem m.

Proposition 1 (Indirect Value Difference Matrix as Costs of What Was Learned). Suppose
the information structures Q are rationalizable under costly learning. Then:

1. For each 1 ≤ m ≤ M , the row Dm∗(Q|u) and sign-inverted column −D∗m(Q|u) are
respectively the minimum and maximum elements (and thus extreme points) of the
subset of m-normalized costs of what was learned:

{K̃ ∈ KM(Q, u) : K̃m = 0} (22)

2. The average of the midpoints of the costs preceding in Part 1 across 1 ≤ m ≤ M is
also a cost function of what was learned, obtained as the average of row means and
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sign-inverted column means:

1
2M

[
M∑

m=1
Dm∗(Q|u) −

M∑
m=1

D∗m(Q|u)
]

(23)

The first part of Proposition 1 shows that each column and row have an interpretation
as a (negative) cost function of what was learned, which are furthermore extremal among a
subset of normalized costs. The second part of Proposition 1 uses this fact and the convexity
of KM(Q, u) to define a single cost function on the domain of what was learned from the
indirect value difference function; by its nature, we call this cost function “representative” in
our context. Of course, ours is not the only possible definition of a representative or otherwise
canonical cost function, and the literature on costly learning contains alternative suggestions.
Notably, Denti (2022) (following Rockafellar 1973) considers the minimal monotone cost
function that rationalizes the dataset and (partially) identifies it as the solution to a linear
program.

We now recover learning costs in the running example. For simplicity, we focus on relative
learning costs of the revealed information structures Q̄1 and Q̄2 for the normalized utility
function (9), as derived in Subsection 5.3. Following Theorem 3, we begin by constructing the
indirect value difference matrix D(Q̄|u). This depends on the direct value differences (18),
which in turn depend on realized and counterfactual gross utilities Ḡm(u) and G(Q̄n|Am, u)
for all decision problems 1 ≤ m, n ≤ M . The gross utilities within decision problem can be
computed as:

G(Q̄1|A1, u) = Ḡ1(u) = 0.8
G(Q̄2|A2, u) = Ḡ2(u) = 0.45 + 0.5u(zM)

(24)

which is consistent with condition (17) of Lemma 1 for rationalizability within decision
problem. Additionally, the gross utilities from switching revealed information structures
across decision problems can be computed as:

G(Q̄2|A1, u) = 0.75
G(Q̄1|A2, u) = 0.8

(25)

From these computed gross utilities, we can then obtain the indirect value difference matrix
at revealed information as:

D(Q̄|u) =
 0 −0.05

0.35 − 0.5u(zM) 0

 (26)

In our simple example, the indirect value difference matrix follows readily upon observing
its elementwise equality with the direct value differences:

Dmn(Q̄|u) = Dm
0 (Q̄n) ≡ G(Q̄n|Am, u) − Ḡ(u)
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for 1 ≤ m, n ≤ 2. In turn, this equality between direct and indirect value differences follows
from two facts. First, the off-diagonal entries must be equal because the only feasible path
involves a single attention (and action) switch across the decision problems. Second, the
diagonal entries are zero because the summed value of the attention cycle 0.35 − 0.5u(zM) −
0.05 is less than zero when u(zM) ≥ 0.6.

Condition (20) of Theorem 3 then yields the bounds:

K(Q̄1) − K(Q̄2) ∈ [0.35 − 0.5u(zM), 0.05] (27)

In our simple example where the direct and indirect value differences coincide, these bounds
also correspond exactly to those from the pairwise incentive compatibility constraints on
learning across decision problem:

0.8 − K(Q̄1) ≥ 0.75 − K(Q̄2);
0.45 + 0.5u(zM) − K(Q̄2) ≥ 0.8 − K(Q̄1).

The set of cost differences (27) is non-empty for all u(zM) ∈ [0.6, 0.8]. When u(zM) = 0.8,
there is a wide range of rationalizing cost differences,

K(Q̄1) − K(Q̄2) ∈ [−0.05, 0.05].

When u(zM) = 0.6 the only rationalizing cost difference is K(Q̄1) − K(Q̄2) = 0.05..

In addition to tractably summarizing bounds on cost functions, the indirect value differ-
ence function encodes viable learning costs in its (average) rows and columns by Proposition
1. Namely, as a function of the utility parameter, each row:

D1∗(Q̄|u) = (0, −0.05), D2∗(Q̄|u) = (0.35 − 0.5u(zM), 0)

and sign-inverted column:

−D1∗(Q̄|u) = (0, −0.35 + 0.5u(zM)), −D2∗(Q̄|u) = (0.05, 0)

is a constrained extremal cost function restricted to revealed learning, and their average (23)
yields a representative such cost:

(0.1 − 0.125u(zM), 0.125u(zM) − 0.1)

Notably, the representative cost places higher cost on Q̄1 than Q̄2 for almost all feasible
u(zM) ∈ [0.6, 0.8), even though this need not be true for a cost function to rationalize the
data.

20



5.2 Nested Models of Learning

Complementing cost recovery, we may also be interested in what this implies about the
nature of learning. For example, can the observed data be rationalized under alternative
models of learning and, if so, what could have been learned? In this section, we use our
machinery to address these questions for two additional important classes of learning model,
which are nested based on additional structure of the cost function K. First, a capacity
constrained model entails cost-free acquisition of information from an exogenous feasible set.
This model is a special case of costly learning where the cost function indicates feasibility:

K : Q → {0, ∞}. (28)

Second, in a fixed information model, information is exogenous to the decision problem, and
the only choice is how to use that information across different problems. This model is a
special case of capacity constraints (28) with a single-valued feasible set:

|{Q ∈ Q : K(Q) < ∞}| = 1. (29)

We now consider these models in turn.

The characterization of what could have been learned in a capacity constrained model
adopts our value difference approach. By a simple revealed preference argument, any (atten-
tion and/or action) switch cannot raise expected utility relative to what was revealed. This
is captured through the direct value difference construction as a non-positivity requirement:

Dm
0 (Qn|u) ≤ 0

for all 1 ≤ m, n ≤ M . This condition is also expressible in terms of our indirect value
difference function, which we refer to as Generalized No Improving (Attention or Action)
Switches (G-NIS):

D(Q|u) ≤ 0 (G-NIS)

This condition is sufficient for possible learning once combined with the informativeness
restriction required for generating the observed data.

Proposition 2. Fix a set of decision problems with data (A, P) and corresponding revealed
information structures Q̄. For a given utility function u, the following are equivalent:

1. There exists a feasibility indicator function K : Q → {0, ∞} and action strategies q
such that (Q, q) rationalizes the data sets P according to capacity constrained learning.

2. The information structures Q satisfy (G-NIS) and are each at least as informative as
their revealed counterparts Q̄.
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An advantage of expressing the condition in terms of the indirect value difference matrix is
that Proposition 2 follows immediately as a corollary of Theorem 3. By (20), only in this
case could the set of information structures have been learned under identically zero costs:

K(Q1) = · · · = K(QM) = 0,

and the remaining information structures in Q can always be taken to be infeasible. Addi-
tionally, the indirect value difference expression of (G-NIS) clearly nests (G-NIC) because the
main diagonal of D(Q|u) is by construction non-negative, since the identity cycle is always
feasible. Note, however, that (G-NIS) holds only if the direct and indirect value differences
coincide:

Dmn(Q|u) = Dm
0 (Qn|u)

for all 1 ≤ m, n ≤ M . Conversely, equality of the direct and indirect value differences does
not imply (G-NIS), as evidenced by the indirect value difference matrix (26) constructed in
the preceding section.

We now show in the running example how Proposition 2 restricts both what could have
been learned and the set of possible prize utilities. Consider the information structure:

γ Q(γ)
1 3/10

1/2 3/10

1/8 2/5

for which we can compute the gross utilities across decision problems as:

G(Q|A1, u) = 0.8
G(Q|A2, u) = 0.65 + 0.3u(zM).

Also, observe that Q is as informative as the revealed information Q̄1 in decision problem
1. For the candidate set of information structures Q = (Q, Q̄2), we can combine these gross
utilities with the revealed gross utilities and the gross value of revealed information Q̄2 from
(24) and (25) to construct the indirect value difference matrix as:

D(Q|u) =

 max{0.15 − 0.2u(zM), 0} −0.05
0.2 − 0.2u(zM) max{0.15 − 0.2u(zM), 0}


By Theorem 2 and the diagonal restrictions, this set of information structures Q is consistent
with costly learning for u(zM) ≥ 0.75; yet, by Proposition 2 and the off-diagonal restrictions,
it is not consistent with capacity constrained learning for any u(zM) < 1, which includes
all possible prize utility values u(zM) ∈ [0.6, 0.8] from (9). In summary, the information
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is inconsistent with capacity constrained learning and consistent with costly learning only
for a subset of possible utility functions. Similarly, the costly information model is only
consistent with the subset of utility functions u(zM) ≥ 0.7 for which the revealed indirect
value difference matrix (26) is non-positive. This follows from Lemma 4, which implies
that the indirect value difference matrix is smallest at the revealed information structures.
We return more systematically to this point and the implications for utility recovery in the
following Subsection 5.3.

Next, recall that the fixed information model assumes the existence of a single feasible
information structure, independently of incentives or decision problem. Fixed information
can be trivially incorporated into the value difference result for capacity constrained learning
(Proposition 2) by imposing the additional constraint that all information structures are
equal:

Q1 = · · · = QM .

Yet, in this case, the indirect value difference construction is largely redundant because there
are no optimality restrictions on the choice of information across decision problem. For the
same reason, the MOPS construction becomes operable even in the presence of choice data
from multiple decision problems. To simplify notation, let Q̄m(u) denote the set of MOPS
of revealed information Q̄m in decision problem Am under utility function u. Applying our
previous MOPS characterization (Theorem 1) across decision problems immediately yields
the following result.

Proposition 3. Fix a set of decision problems with data (A, P) and corresponding revealed
information structures Q̄. For a given utility function u and a candidate fixed information
structure Q, the following are equivalent:

1. There exist action strategies q that rationalize the data P with fixed information Q.

2. The information structure Q is a MOPS of each revealed information structure:

Q ∈
M⋂

m=1
Q̄m(u)

We now illustrate in the running example how this MOPS characterization operationalizes
the construction of rationalizing information sets.6 We begin by arguing that any fixed
information structure Q in the running example must place exactly probability 0.25 on the
certain posterior γ = γ(ω1) = 1 that the state is ω1:

Q(1) = 0.25
6By a similar token, this characterization could also be used to rule out fixed information representations.
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This follows from two observations in decision problem 2. First, Q(1) ≥ 0.25 since the
revealed information structure places this probability Q̄2(1) = 0.25, which cannot be recov-
ered as a mixture of other posteriors. Second, Q(1) ≤ 0.25 since it is strictly optimal to
choose a1 at this posterior, and the probability of choosing action a1 in decision problem 2
is P 2(a1) = 0.25.

This leaves a probability mass 0.25 of uncommitted posterior probabilities that can be
spread from revealed posterior γ̄a1

1 in (subscripted) decision problem 1. We now argue that
this remaining mass must all stem from posteriors in [0.5, 0.8], and the average posterior in
this range must be 0.6:∑

γ∈[0.5,0.8]
Q(γ) = 0.25,

∑
γ∈[0.5,0.8]

γQ(γ) = 0.25 × 0.6

First, to preserve optimality of a1 in choice set A1, this mass can be spread on [0.5, 1].
However, this mass cannot be spread to posteriors in the range (0.8, 1] because, as before,
optimality in choice set A2 would imply a strictly higher probability of choosing action a1

than observed in data set P 2. Second, the average revealed posterior γ̄a1
1 in decision problem

1 is 0.8, and action a1 is chosen in this decision problem with probability P 1(a1) = 0.5. Since
we already deduced that fixed information must satisfy Q(1) = 0.25, this implies that the
spread posteriors must average to 0.6 for the remaining probability mass 0.25.

Next, we argue that a fixed information structure must put mass 0.5 on posterior 0.2:

Q(0.2) = 0.5.

The choice of action a2 in both choice sets A1 and A2 has a common revealed posterior
γ̄a2

1 (ω1) = γ̄a2
2 (ω1) = 0.2, but a probability P 1(a2) = 0.5 in choice set A1 rather than a

probability P 2(a2) = 0.25 in choice set A2. Furthermore, optimality implies that the set of
posteriors at which a2 is chosen in A2 is a subset of those where a2 is chosen in A1, since
the upper posterior cutoff 1 − u(zM) ≤ 0.4 for action a2 in choice set A2 is lower than the
upper posterior cutoff 0.5 in choice set A1. Consider then the set of posteriors at which a2 is
chosen in A1 but not in A2. By optimality, their support has a lower bound of 0.2, the lowest
posterior at which it could be optimal not to choose a2 in A2. If, however, there is positive
probability on any posteriors above 0.2, then removing mass from these posteriors in choice
set A1 relative to A2 would strictly decrease the revealed posterior of a2 in A1, which it does
not. Therefore a3 must be chosen in A2 at posterior 0.2. In this case, the posteriors at which
a2 is chosen in A1 and A2 are also bounded above by 0.2, which is only possible when 0.2 is
the only posterior at which a2 is chosen. Therefore the only possibility is that Q(0.2) = 0.5,
as desired.

Finally, the average posterior other than 0.2 at which a3 is chosen in data set P 2 must
be 0.6 to rationalize the revealed posterior γ̄a3

2 = 0.4 in decision problem 2. However, this

24



1

.6

.2

a1

a2

0.4 = .25 × 1 × 1 + .25 × .6 × 1

0.1 = .5 × .2 × 1

.25

.25

.5

1

1

1

Q(γ) γ q1(a|γ) A1 P 1(a, ω1)

1

.6

.2

a1

a2

a3

0.25 = .25 × 1 × 1

0.05 = .5 × .2 × .5

0.20 = .25 × .6 × 1 + .5 × .2 × .5

.25

.25

.5

1

1 .5
.5

Q(γ) γ q2(a|γ) A2 P 2(a, ω1)

Figure 2: Existence of a common distribution of posteriors and mixed action strategies q1, q2

that rationalize the data sets P 1, P 2.

was already implied previously and therefore adds no further restrictions. We conclude that
there are no more restrictions. Figure 2 illustrates a fixed information rationalization with
Q(0.6) = 0.25. By the preceding arguments, we can generalize this example in only one
respect. We can spread the mass on posterior 0.6 to any set of posteriors on the support
[0.5, 0.8] in a mean-preserving way and then set the corresponding strategy of deterministi-
cally choosing a1 at all such posteriors in A1 and a3 at all such posteriors in A2. This also
implies that the information structure in Figure 2 is the least informative fixed information
structure that can rationalize the observed data.

We conclude by noting how the fixed information model can impose additional restric-
tions on prize utilities, even beyond those of the capacity constrained model. In particular,
the preceding derivation showed that a3 must be chosen in A2 with positive probability at
posterior 0.2 in any fixed information rationalization; in turn, such a choice is only optimal
for the normalized utility function where u(zM) = 0.8. Thus, the utility function is effec-
tively point identified in the example under a model of fixed information, and the requisite
identification arguments arise naturally in the derivation of a fixed information structure
using MOPS. Next, we propose a generalized method of recovering prize utilities for the
costly learning model and its capacity constrained variant.
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5.3 Prize Utilities

So far, our leading characterizations of what could have been learned took the utility function
as given. We now consider recovery of the prize utility function in cases where it is not a
known primitive of the empirical application.

A starting point for utility recovery is the question of utility consistency: namely, when
is a utility function consistent with some costly learning (or capacity constrained) represen-
tation? Our methods provide a simple answer to this preliminary question in terms of the
indirect value difference function evaluated at the revealed information structures.

Proposition 4 (Consistency of a Known Utility Function). Given data set (A, P), a utility
function u : Z → R is consistent with costly learning if and only if the No Improving Cycles
property holds at the revealed set of information:

diag(D(Q̄|u)) = 0 (30)

The utility function is consistent with capacity constrained learning if and only if there exist
No Improving Switches at the revealed set of information:

D(Q̄|u) ≤ 0 (31)

These results follow respectively (and immediately) from Theorem 2 and Proposition 2,
combined with the revealed lower bound on D(·|u) from Lemma 4.

The first condition (30) distills and operationalizes the consistency characterization (The-
orem 1) of CD15 in terms of the indirect value difference matrix at revealed information.
Namely, it can be verified by definition that (30) is equivalent to the combination of the
No Improving Action Switch (NIAS) and No Improving Attention Cycle (NIAC) conditions
of Caplin and Martin (2015) and CD15, respectively. The second statement provides the
first general representation theorem for capacity constrained learning, which underlies vast
literatures in psychology, cognition, and neuroscience. The idea embodied in condition (31)
is that there can exist No Improving Switches in revealed information across (or within)
decision problem upon re-optimizing actions.

The main contribution of this subsection is to show how we can use the implicit and
existential results of Proposition 4 to obtain explicit expressions for the sets of utility func-
tions consistent with the data and the respective models. To do so, we extend a geometric
approach, introduced by Caplin and Martin (2021), that summarizes the consistency restric-
tions in the space of utilities and (changes in) prize lotteries. More specifically, differences
between realized and feasible prize lotteries generate a cone, whose dual cone equals the set of
feasible utility functions. Intuitively, this approach recovers feasible utility functions because
the inequalities defining the dual cone rule out improvements from counterfactual attention
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and action strategies. As in the characterization of CD15 and the above Proposition 4, for
the sake of utility recovery it suffices to proceed as if revealed information structures coincide
with those that are learned.

In that case, we define an attention and action switch of revealed data as a function
s : An → Am from a source choice set An to target action set Am. Let Smn denote the set of
such switches, and let S ≡ ∪Smn denote the set of all such switches across 1 ≤ m, n ≤ M .
With a slight abuse of notation, we suppose that an action switch preserves information
about its domain and codomain, so that we can without ambiguity refer to ms and ns as the
target and source decision problems associated with switch s, which simplifies subsequent
notation. Intuitively, s switches attention in decision problem ms with attention in decision
problem ns and deterministically switches actions across the decision problem choice sets.
An attention and action cycle of revealed data c comprises an attention cycle h⃗ combined
with a set of corresponding attention and action switches sj ∈ Shjhj+1 for 1 ≤ j ≤ J (⃗h),
where (recall) J (⃗h) denotes the length of the cycle. Let C denote the set of such attention
and action cycles.

The characterizations of utility functions that admit a costly information or capacity
constrained representation are based on ruling out utility improvements from attention and
action switches and cycles, respectively. For each switch s ∈ S and with a slight abuse of
previous notation, define the counterfactual switched dataset as:

P s(a, ω) ≡
∑

b∈s−1(a)
P ns(b, ω) (32)

where s−1(a) = {b ∈ Ans : s(b) = a} denotes the set of actions in Ans that are switched by s

to a. We can then define a revealed and a counterfactual lottery associated with each switch
as follows. Define the lottery revealed in decision problem m, L̄m = (L̄m

1 , . . . , L̄m
K) ∈ ∆(Z),

on a prize-by-prize basis 1 ≤ k ≤ K by:

L̄m
k ≡

∑
a∈A

∑
ω∈Ω

P m(a, ω)I{z(a, ω) = zk} (33)

where I{z(a, ω) = zk} is an indicator function that the prize in action and state (a, ω) is zk.
Analogously, define the lottery over prizes associated with the switched dataset by:

Ls
k ≡

∑
a∈A

∑
ω∈Ω

P s(a, ω)I{z(a, ω) = zk}. (34)

Despite more elaborate notation, we can compute similar lotteries for each attention and
action cycle c ∈ C. The main difference from the lotteries associated with switches is that
we now average over all (respectively revealed and switched) lotteries in the attention cycle.
Again proceeding prize-by-prize and with a slight abuse of previous notation, the revealed
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and counterfactual lotteries associated with the cycle c are defined respectively as:

L̄c
k ≡ 1

J (⃗hc)

J (⃗hc)∑
j=1

L̄hcj

k and Lc
k ≡ 1

J (⃗hc)

J (⃗hc)∑
j=1

Lscj

k (35)

where 1 ≤ hcj ≤ M is the jth node in the attention cycle of c, and scj is the associated
attention and action switch.

In each case, the difference between the revealed lottery and counterfactual lottery gives
the change in prize distributions that could have been obtained under an alternative at-
tention and action strategy, relative to what was chosen. Allowing for positively weighted
combinations of such differences defines a convex cone, which in turn defines a dual (and also
convex) cone. The lottery cone of attention and action switches is the convex cone S ⊆ RK

formed by all changes in prize lotteries associated with attention and action switches:

S ≡
{∑

s∈S

αs[L̄ms − Ls]
∣∣∣α ∈ R|S|

+

}
,

with its dual cone S∗ ⊆ RK defined as:

S∗ ≡ {u ∈ RK |x · u ≥ 0 ∀x ∈ S}

Analogously, the lottery cone of attention and action cycles is the convex cone C ⊆ RK

formed by all summed changes in prize lotteries associated with attention and action cycles:

C ≡
{∑

c∈C

αc[L̄c − Lc]
∣∣∣α ∈ R|C|

+

}
.

with its dual cone C∗ ⊆ RK defined as:

C∗ ≡ {u ∈ RK |x · u ≥ 0 ∀x ∈ C}

Our key result of utility recovery is that the sets of utility functions consistent with costly
information and capacity constrained learning are given by the dual cones of attention and
action cycles and switches, respectively.

Proposition 5 (Recovering Prize Utilities). The set UCI of utility functions consistent with
costly information is equal to the dual cone of attention and action cycles:

UCI = C∗

The set UCC of utility functions consistent with capacity constrained learning is equal to the
dual cone of attention and action switches:

UCC = S∗
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Intuitively, the change in prize distributions for a feasible strategy cannot strictly increase
expected utility relative to what was chosen. For capacity constrained learning, for example,
any attention and action switch is feasible because the requisite attention strategy is feasible,
given that it was chosen in some decision problem. Thus, a necessary condition for a utility
function u to admit a capacity constrained learning representation is that:

[L̄ms − Ls] · u ≥ 0 ∀s ∈ S. (36)

For costly learning, any attention and action cycle holds fixed the aggregate cost of learning
across its included decision problems, and therefore the cycle cannot increase gross utility
relative to what was actually chosen. Given that each cone C and S comprises only positively
weighted combinations of the corresponding lottery differences, the respective inequalities
à la (36) extend to the entire cones. By definition, therefore, the sets of consistent utility
functions are exactly given by the dual cones.

In essence, Proposition 5 is just an alternative way of geometrically expressing Propo-
sition 4 along the lines of Caplin and Martin (2021), where Proposition 4 (in the case of
costly information) in turn summarizes the previous consistency characterization of CD15.
Nevertheless, from the standpoint of recovery, this is a conceptually useful distinction. Fur-
thermore, a subtlety arising in the present context is that the dual logic proceeded in terms
of direct action switches and cycles of the revealed data. It is less apparent how (or whether)
such a dual characterization could be attained for, say, a fixed information representation or
for learned information structures distinct from those that were directly revealed.

We now illustrate the utility cones in our running example, introduced in Subsection
1.1. The revealed lotteries over the three prizes (zG, zM , zB) associated with the decision
problems m = 1, 2 are respectively given by:

L̄1 = (0.8, 0, 0.2) (37)
L̄2 = (0.45, 0.5, 0.05) (38)

For the sake of exposition, we begin by ruling out improving action switches, holding
attention fixed. This corresponds to the No Improving Action Switch condition of Caplin and
Martin (2015) and is required for any Bayesian expected utility maximization representation,
including costly information and capacity constrained representations. Within choice set
A1, the possible action switches are choosing a2 in place of a1 and vice versa. In each case,
the counterfactual prize lotteries attained yield (0.2, 0, 0.8). The difference between actual
and counterfactual lotteries is therefore (0.6, 0, −0.6). Given that choices are optimal, we
conclude that prize utilities (u(zG), u(zM), u(zB)) must have a positive dot product with this
difference vector, so that u(zG) ≥ u(zB).

In choice set A2, consider first the action switches from a1. When chosen, a1 yields pure
prize zG and utility u(zG). Switching from a1 to a2 is not strictly improving since it yields
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zB, and already u(zB) ≤ u(zG). Switching from a1 to a3 would yield zM , which implies that
u(zG) ≥ u(zM). Next, consider action switches from a2. Switching from a2 to a1 cannot be
improving since it only lowers the probability of receiving zG rather than zB. For a switch
from a2 to a3 to be non-improving requires that the lottery (0.8, 0, 0.2) resulting from a2 be
at least as good as the pure prize zM achievable by switching to a3,

0.8u(zG) + 0.2u(zB) ≥ u(zM).

Finally, consider switches from a3, which produces pure prize zM . For the best alternative
— to switch to a2 and get the lottery (0.6, 0, 0.4) — to be non-improving requires that:

u(zM) ≥ 0.6u(zG) + 0.4u(zB).

Combining the above inequalities we confirm that the only non-trivial rationalization involves
u(zG) > u(zM) > u(zB), as foreshadowed by the good, medium, and bad prize subscripts.
Normalizing u(zG) = 1 and u(zB) = 0, the preceding implications are summarized by the
condition that u(zM) ∈ [0.6, 0.8].

The remaining conditions required for capacity constrained learning involve also switching
attention across decision problems. First, consider switching attention from decision problem
2 to 1. Given the preceding conclusions, at each posterior it is best to choose the action in A1

that is more likely to yield prize zG rather than zB. The corresponding counterfactual lottery
is (0.75, 0, 0.25), while the chosen lottery was L̄1 = (0.8, 0, 0.2). Hence there is a difference
of (0.05, 0, −0.05) between the chosen and counterfactual lotteries. For the counterfactual
lottery to be non-improving, it must be that u(zG) ≥ u(zB), which was already established
previously from considering only action switches.

The implications of switching attention from decision problem 1 to 2 are equally simple:
given the bounds u(zM) ≤ 0.8 already established, the maximum utility derives from picking
the action that yields lottery (0.8, 0, 0.2). The chosen lottery was L̄2 = (0.45, 0.5, 0.05).
Hence there is a difference of (−0.35, 0.5, −0.15) between the chosen and counterfactual
lotteries. For the counterfactual lottery to be non-improving, it must be that:

u(zM) ≥ 0.7.

Combining with the preceding conditions, the conditions for capacity constrained learning
with normalization u(zG) = 1 and u(zB) = 0 are summarized by u(zM) ∈ [0.7, 0.8].

Finally, consider the remaining conditions required for costly learning. The attention
and action cycle constraints prevent utility rising only when both attention switches occur
simultaneously, because in this case learning costs cancel out of the equation. Consider the
arithmetic average of the change in lottery when attention is switched across the two decision
problems, with subsequent optimization in action. Based on the separate implications of each
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such attention switch discussed previously, the averaged change in lotteries is:

(−0.35, 0.5, −0.15) + (0.05, 0, −0.05)
2 = (−0.15, 0.25, −0.1).

Given what is already known, the corresponding inequality on utilities for which this yields
positive utility is:

u(zM) ≥ 0.6,

which adds no new constraints over those already derived. In summary, the conditions for
costly learning with normalization u(zG) = 1 and u(zB) = 0 are summarized by u(zM) ∈
[0.6, 0.8]. These are precisely the conditions (9) which were taken as given throughout the
preceding analysis.
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A Proofs

A.1 Theorem 1 and Lemma 1

We prove Theorem 1 and Lemma 1 simultaneously to clarify the three-way Blackwellian
equivalence between signal garbling, mean preserving spreads, and the value of information,
specialized in our setting to optimal choice. As the proof makes clear, a rationalizing action
strategy q is effectively a garbling of the revealed information structure, which is furthermore
optimal in the sense that it only puts weight on actions that are optimal given posteriors.

As a preliminary, we use Lemma 2 to collect two observations on the gross value of
learning function G(Q|A, u) for use in what follows.

Lemma 2. The gross value of learning is equivalently defined in terms of pure actions:

G(Q|A, u) =
∑

γ∈Γ(Q)
Q(γ)

[
max
a∈A

U(a|γ, u)
]

(39)

The gross value of learning revealed information weakly exceeds revealed gross utility:

G(Q̄|A, u) ≥ Ḡ(u) (40)

Proof of Lemma 2. By definitions (5) and (7),

G(Q|A, u) ≡ max
q:Γ(Q)→∆(A)

∑
γ∈Γ(Q)

∑
a∈A

Q(γ)q(a|γ)U(a|γ, u).

This optimization problem is a linear program, consequently with optimal solutions at its
extreme points. Therefore it is without loss of generality for defining the value function to
restrict to extreme points, which yields exactly (39). For (40),

Ḡ(u) =
∑
a∈A

∑
ω∈Ω

P (a, ω)u(z(a, ω)) by (16)

=
∑
a∈A

∑
ω∈Ω

P (a)γ̄a(ω)u(z(a, ω)) by (1)

=
∑
a∈A

P (a)
∑
ω∈Ω

γ̄a(ω)u(z(a, ω)) by rearrangement

=
∑
a∈A

P (a)U(a|γ̄a, u) by (4)

≤
∑
a∈A

P (a)
[
max
b∈A

U(b|γ̄a, u)
]

by optimization

=
∑

γ̄∈Γ(Q̄)
Q̄(γ̄)

[
max
b∈A

U(b|γ̄, u)
]

collecting terms

= G(Q̄|A, u). by (39)
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Proof of Theorem 1 and Lemma 1. In combination, the two results establish the following
three-way equivalence. Fix a decision problem with data (A, P ) and revealed information
structure Q̄. Given utility function u, the following are equivalent for an information struc-
ture Q:

1. There exists an optimal action strategy q such that (Q, q) rationalizes the data P

according to EU maximization.

2. The information structure Q is a mean and optimality preserving spread of Q̄.

3. The information structure Q is as informative as the revealed information structure Q̄

and yields maximal gross utility equal to what is revealed.

The proof proceeds by showing that (3) =⇒ (2) =⇒ (1) =⇒ (3).

(3 =⇒ 2) Suppose that Q is as informative as Q̄ and yields maximal gross utility
equal to what is revealed (17). Since Q is assumed at least as valuable as Q̄, Blackwell’s
Theorem (Blackwell 1953, Theorem 2) implies the existence of a transition matrix B :
|Γ(Q)| × |Γ(Q̄)| → [0, 1] defining Q as a mean preserving spread of Q̄. For the sake of
contradiction, suppose that this B does not preserve the optimality (13) additionally required
for a MOPS (Definition 1). Then there exists a chosen action P (a) > 0 and a posterior
γ ∈ Γ(Q) such that a is not optimal at spread posterior γ:

P (a) > 0, B(γ|γ̄a) > 0, γ /∈ Γ̂(a|A, u) (41)

This contradicts the assumption that Q yields maximal gross utility equal to what is revealed
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(17) because:

Ḡ(u) =
∑
a∈A

∑
ω∈Ω

u(z(a, ω))P (a, ω) by (16)

=
∑
a∈A

∑
ω∈Ω

u(z(a, ω))P (a)γ̄a(ω) by (1)

=
∑
a∈A

∑
ω∈Ω

u(z(a, ω))P (a)
∑

γ∈Γ(Q)
B(γ|γ̄a)γ(ω) by (12)

=
∑
a∈A

∑
γ∈Γ(Q)

P (a)B(γ|γ̄a)
∑
ω∈Ω

γ(ω)u(z(a, ω)) by rearranging

=
∑
a∈A

∑
γ∈Γ(Q)

P (a)B(γ|γ̄a)U(a|γ, u) by (4)

<
∑
a∈A

∑
γ∈Γ(Q)

P (a)B(γ|γ̄a)
[
max
b∈A

U(b|γ, u)
]

by (41)

=
∑

γ∈Γ(Q)

[
max
b∈A

U(b|γ, u)
] ∑

a∈A

P (a)B(γ|γ̄a) by rearranging

=
∑

γ∈Γ(Q)

[
max
b∈A

U(b|γ, u)
] ∑

γ̄∈Γ(Q̄)
Q̄(γ̄)B(γ|γ̄) by collecting terms

=
∑

γ∈Γ(Q)

[
max
b∈A

U(b|γ, u)
]

Q(γ) by (11)

= G(Q|A, u) by (7)

(2 =⇒ 1) Suppose there exists a transition matrix B : |Γ(Q)| × |Γ(Q̄)| → [0, 1] defining
Q as a mean and optimality preserving spread (MOPS) of Q̄. We use B to construct a mixed
strategy q : Γ(Q) → ∆(A) such that (Q, q) generates the data (3) in an optimal way (6). For
this, it suffices to restrict to chosen actions P (a) > 0, since for other actions rationalization
is achieved by setting q(a|γ) = 0 for any posterior γ.

We now establish that the following mixed strategy q : Γ(Q) → ∆(A) has the property
that it combines with Q to generate the data and does so while focused only on optimal
choices:

q(a|γ) = P (a)B(γ|γ̄a)
Q(γ) (42)

Note first that q as defined in (42) are mixed strategies by construction since they are
nonnegative and summing the numerators across actions yields the denominator:

∑
a∈A

P (a)B(γ|γ̄a) =
∑
a∈A

q(a|γ)Q(γ) = Q(γ).

To confirm that (Q, q) rationalizes the data, note given any chosen action P (a) > 0 and
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state ω:

P(Q,q)(a, ω) =
∑

γ∈Γ(Q)
q(a|γ)Q(γ)γ(ω) by (2)

=
∑

γ∈Γ(Q)
P (a)B(γ|γ̄a)γ(ω) by (42)

= P (a)
∑

γ∈Γ(Q)
B(γ|γ̄a)γ(ω) by rearranging

= P (a)γ̄a(ω) by (12)
= P (a, ω). by (1)

Finally, we show that the mixed strategy q identified above only chooses actions at posteriors
where they are optimal, as in (6). By construction (42), q(a|γ) > 0 implies B(γ|γ̄a) > 0. By
the defining property (13) of a mean and optimality preserving spread,

q(a|γ) > 0 =⇒ γ ∈ Γ̂(a|A, u). (43)

In that case, we have:

g(q, Q) =
∑

γ∈Γ(Q)

∑
a∈A

Q(γ)q(a|γ)U(a|γ, u) by (5)

=
∑

γ∈Γ(Q)

∑
a∈A

Q(γ)q(a|γ)
[
max
b∈A

U(b|γ, u)
]

by (43)

=
∑

γ∈Γ(Q)
Q(γ)

[
max
b∈A

U(b|γ, u)
] ∑

a∈A
q(a|γ) by rearrangement

=
∑

γ∈Γ(Q)
Q(γ)

[
max
b∈A

U(b|γ, u)
]

because q(·|γ) ∈ ∆(A)

= G(Q|A, u) by (39)

which implies by definition of the gross value of learning function (7) that q is optimal for
choice set A given u.

(2 =⇒ 1) Suppose there exists an action strategy q such that (Q, q) rationalizes the data
according to EU maximization (6). First, observe from rationalization that for all γ̄ ∈ Γ(Q̄)
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and ω ∈ Ω we have:

Q̄(γ̄)γ̄(ω) =
∑

a:γ̄a=γ̄

P (a)γ̄(ω) collecting terms

=
∑

a:γ̄a=γ̄

P (a, ω) by (1)

=
∑

a:γ̄a=γ̄

P(Q,q)(a, ω) by (3)

=
∑

a:γ̄a=γ̄

∑
γ∈Γ(Q)

q(a|γ)Q(γ)γ(ω) by (2)

=
∑

γ∈Γ(Q)

 ∑
a:γ̄a=γ̄

q(a|γ)
Q(γ)γ(ω) by rearranging

The outer equality relates the joint distributions over posteriors and states (i.e. Blackwell
experiments with posteriors as signal realizations) Q̄(γ̄)γ̄(ω) and Q(γ)γ(ω) via the garbling
function:

f(γ̄|γ) ≡
∑

a:γ̄a=γ̄

q(a|γ).

By Blackwell’s Theorem (Blackwell 1953, Theorem 5),7 this implies that information struc-
ture Q is at least as valuable as Q̄. It remains to show that Q yields maximal gross utility
equal to what is revealed (17):

G(Q|A, u) ≥ G(Q̄|A, u) by informativeness
≥ Ḡ(u) by (40)
=
∑
a∈A

∑
ω∈Ω

u(z(a, ω))P (a, ω) by (16)

=
∑
a∈A

∑
ω∈Ω

u(z(a, ω))P(Q,q)(a, ω) by (3)

=
∑
a∈A

∑
ω∈Ω

u(z(a, ω))
∑

γ∈Γ(Q)
q(a|γ)Q(γ)γ(ω) by (2)

=
∑

γ∈Γ(Q)
Q(γ)

∑
a∈A

q(a|γ)
∑
ω∈Ω

γ(ω)u(z(a, ω)) by rearranging

=
∑

γ∈Γ(Q)
Q(γ)

∑
a∈A

q(a|γ)U(a|γ, u) by (4)

= g(q, Q|u) by (5)
= G(Q|A, u)

where the last step follows from the starting assumption that q was optimal (6) for choice
set A given utility u.

7For a statement and proof of the result in our notation, see also Perez-Richet (2017).
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A.2 Theorems 2 and 3

We begin by isolating the cyclically monotone aspect of our proof argument for Theorem 2
in a separate Lemma 3, which is essentially attributable to Rochet (1987) in the context of
implementation in a quasi-linear context; see also Koopmans and Beckmann (1957) in the
context of optimal assignment problems, Rockafellar (1970) in the context of subdifferentials
of convex functions, and Caplin and Dean (2015) for a preceding implementation of this logic
for testing the costly information acquisition model.

Lemma 3 (Rochet 1987, Theorem 1). For a tuple of information structures Q ≡ (Q1, . . . , QM),
there exists a K̃ ∈ RM satisfying:

G(Qm|Am, u) − K̃m ≥ G(Qn|Am, u) − K̃n ∀ 1 ≤ m, n ≤ M (44)

if and only if:

max
h⃗∈H(m,m)

J (⃗h)∑
j=1

[G(Qhj+1|Ahj

, u) − G(Qhj |Ahj

, u)] = 0 ∀ 1 ≤ m ≤ M (45)

Proof of Lemma 3. For completeness, we repeat the short and constructive proof of Rochet
(1987) (itself adapted from arguments in the proof of Theorem 24.8 in Rockafellar (1973))
using our notation and indexing. First, suppose there exists a K̃ ∈ RM satisfying (44).
Rearrangement yields:

G(Qn|Am, u) − G(Qm|Am, u) ≤ K̃n − K̃m ∀ 1 ≤ m, n ≤ M

Summing over any cycle h⃗ of indices,

J (⃗h)∑
j=1

[G(Qhj+1|Ahj

, u) − G(Qhj |Ahj

, u)] ≤
J (⃗h)∑
j=1

[K̃hj+1 − K̃hj ] = 0

Since a length-1 cycle h(1) = h(2) achieves the zero bound, this implies (45).

Conversely, assume (45). Re-ordering sums for case m = 1 implies:

max
h⃗∈H(1,1)

J (⃗h)∑
j=1

[G(Qhj+1|Ahj

, u) − G(Qhj+1|Ahj+1
, u)] = 0

or, upon reversing cycles,

max
h⃗∈H(1,1)

J (⃗h)∑
j=1

[G(Qhj |Ahj+1
, u) − G(Qhj |Ahj

, u)] = 0. (46)
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Define as a function of the index 1 ≤ m ≤ M ,

V (m) = max
h⃗∈H(1,m)

J (⃗h)∑
j=1

[G(Qhj |Ahj+1
, u) − G(Qhj |Ahj

, u)]

Note that the maximum exists in our case since there are only finitely many paths in H(1, m).
For any 1 ≤ m, n ≤ M , the construction and (46) imply:

V (m) ≥ V (n) + G(Qn|Am, u) − G(Qn|An, u)

Defining K̃m ≡ G(Qm|Am, u) − V (m) and substituting yields (44).

Proof of Theorem 2. Suppose there exists a learning cost function K and a set of action
strategies q such that (Q, q) rationalizes the data sets P according to costly learning. By
Lemma 1, rationalizability within decision problem implies that Qm is as informative as Q̄m

and yields revealed utility (17):

G(Qm|Am, u) = Ḡm(u)

for all 1 ≤ m ≤ M . By definition, rationalizability across decision problem requires the
existence of a learning cost function K : Q → R ∪ {∞} satisfying:

G(Qm|Am, u) − K(Qm) ≥ G(Qn|Am, u) − K(Qn) ∀ 1 ≤ m, n ≤ M

which by Lemma 3 implies cyclic monotonicity (45). Plugging revealed utility from (17) into
this condition and substituting for direct and direct value difference functions (18) and (19)
yields the (G-NIC) condition because:

0 = max
h⃗∈H(m,m)

J (⃗h)∑
j=1

G(Qhj+1|Ahj

, u) − G(Qhj |Ahj

, u)

= max
h⃗∈H(m,m)

J (⃗h)∑
j=1

G(Qhj+1|Ahj

, u) − Ḡhj (u)

= max
h⃗∈H(m,m)

J (⃗h)∑
j=1

Dhj

0 (Qhj+1|u)

= Dmm(Q̄|u)

Conversely, suppose the information structures Q satisfy (G-NIC) and are each as in-
formative as their revealed counterparts Q̄. For any 1 ≤ m ≤ M and length-1 cycle
h(1) = h(2) = m, we have:

J (⃗h)∑
j=1

Dhj

0 (Qhj+1|u) = Dm
0 (Qm|u)
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Since each set of cycles H(m, m) includes such a cycle, (G-NIC) implies:

Dm
0 (Qm|u) ≡ G(Qm|Am, u) − Ḡm(u) ≤ 0

By informativeness Qm ⪰ Q̄m and condition (40) of Lemma 2, we also have:

G(Qm|Am, u) ≥ G(Q̄m|Am, u) ≥ Ḡm(u)

Combining the preceding two equalities yields:

G(Qm|Am, u) = Ḡm(u)

which combined with informativeness implies rationalizability within decision problem ac-
cording to expected utility maximization (6), by Lemma 1. Additionally, plugging this
equality into (G-NIC) yields cyclic monotonicity (45). In turn, by Lemma 3 this implies the
existence of a K̃ ∈ RM satisfying (44). For rationalizability across decision problems, it then
suffices to define a cost function K : Q → R ∪ {∞} to equal K̃m when evaluated at Qm,
1 ≤ m ≤ M , and to equal infinity otherwise.

Proof of Theorem 3. Suppose the data P is rationalized according to costly learning by infor-
mation structures Q = (Q1, . . . , QM) in combination with a cost function K : Q → R∪{∞}.
Rationalizability across decision problems implies:

G(Qm|Am, u) − K(Qm) ≥ G(Q|Am, u) − K(Q) ∀ 1 ≤ m ≤ M, Q ∈ Q (47)

Upon substituting for revealed gross utility by rationalizability within decision problem
(Lemma 1), rearranging, and substituting again for direct value difference (18), we obtain:

K(Q) − K(Qm) ≥ Dm
0 (Q|u) ∀ 1 ≤ m ≤ M, Q ∈ Q

Chaining such inequalities for any attention path h⃗ ∈ H(m, n) among chosen information
structures implies:

K(Qn) − K(Qm) =
J (⃗h)∑
j=1

[K(Qhj+1) − K(Qhj )] ≥
J (⃗h)∑
j=1

D0(Qhj+1|u)

which by definition of the indirect value difference function implies (20). For any other
information structure Q ∈ Q that could have been learned, the inequalities imply:

K(Q) ≥ Dm
0 (Q|u) + K(Qm) ∀ 1 ≤ m ≤ M

which yields (21).

Conversely, suppose that K satisfies (20) and (21). Evaluating (20) at m = n implies
Dmm(Q|u) ≤ 0, so that Q is rationalizable within each decision problem. That the learning
cost function K rationalizes learning across decision problems follows from reversing the
preceding arguments to conclude (47).
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A.3 Remaining Propositions

Proof of Proposition 1. For the sake of this result, it suffices to restrict the domain of cost
functions to what was learned. In particular, any vector K̃ ∈ RM consistent with the
constraints on the costs of what was learned (20) can be extended to a cost function on Q
that also satisfies constraints (21) on the costs of what was not learned.

For the first part, it suffices to show the result for an arbitrary row and (negative) column
of D(Q|u), say those indexed by m = 1. By Theorem 3, any rationalizing cost function (on
the domain of what was learned) must satisfy:

K̃m ≥ K̃1 + D1m(Q|u)
K̃m ≤ K̃1 − Dm1(Q|u)

Among such vectors K̃ satisfying K̃1 = 0, these inequalities become:

D1m(Q|u) ≤ K̃m ≤ −Dm1(Q|u)

or expressed in vector notation,

D1∗(Q|u) ≤ K̃ ≤ −D∗1(Q|u)

Thus, D1∗(Q|u) and −D∗1(Q|u) are lower and upper bounds on the set:

{K̃ ∈ KM(Q|u) : K̃1 = 0}

In order for them to be its minimum and maximum elements (and thus extreme points), it
remains to confirm that they are indeed elements of this set. We confirm this only for the
lower bound D1∗(Q|u), since the arguments for the upper bound are analogous. By condition
(20) of Theorem 3, it suffices to verify that the vector satisfies the cost bounds on what was
learned:

D1n(Q|u) − D1m(Q|u) ≥ Dmn(Q|u) ∀ 1 ≤ m, n ≤ M

or, rearranging,

D1n(Q|u) ≥ D1m(Q|u) + Dmn(Q|u) ∀ 1 ≤ m, n ≤ M

For any 1 ≤ m, n ≤ M , consider a pair of paths (1, . . . , m) and (m, . . . , n) that, by defi-
nition (19) of the indirect value difference function, attain the optimal values of the max-
imization problems defining the right-hand terms. If the combined path (1, . . . , m, . . . n)
contains no cycle, then it is a feasible attention path for the maximization problem defining
the left-hand term, implying the lower bound. If the combined path does contain a cycle
(1, . . . , r, . . . m, . . . , r, . . . m), then it is a lower bound for any attention path (1, . . . , r . . . , n)
obtained by cutting out the cycle(s), since by rationalizability a length-1 cycle (r, r) attains
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the zero upper bound Drr(Q|u) = 0 among all cycles in H(r, r). In turn, the attention path
obtained by eliminating cycles is a feasible attention path for the maximization problem
defining the left-hand term, implying the desired lower bound. This proves the first part of
the result.

For the second part, observe that the set of rationalizing costs KM(Q, u) is a convex
polyhedron. By part 1, each term Dm∗(Q|u) and −D∗m(Q|u) is an element of this set. By
convexity of the set, their average (23) is also an element of the set.

Proof of Proposition 2. To begin, observe that (G-NIS) implies (G-NIC) because diag(D(Q|u)) ≥
0 by construction, and so D(Q|u) ≤ 0 implies diag(D(Q|u)) = 0. Suppose the information
structures Q satisfy (G-NIS) and are each as informative as their revealed counterparts; by
Theorem 2 they are rationalizable under costly learning. Furthermore, by the sharp cost
bounds of Theorem 3, they are rationalizable by a cost function satisfying K(Qm) = 0 for
all 1 ≤ m ≤ M and K(Q) = ∞ otherwise. Thus, they are rationalizable in a capacity
constrained model.

Conversely, if the information structures are not as informative as their revealed coun-
terparts, then they are not rationalizable within decision problem; if they violate (G-NIS),
by Theorem 3 there exists some 1 ≤ m, n ≤ M for which:

K(Qn) − K(Qm) ≥ Dmn(Q|u) > 0

which implies they are not rationalized by any cost function satisfying K(Qm) = 0 for all
1 ≤ m ≤ M . Thus, they are not rationalizable under capacity constraints.

Proof of Proposition 3. This result is immediate by construction upon applying the within-
problem characterization (Theorem 1) across decision problem. Distinctly from the costly
learning and capacity constrained models, the across-problem constraints on learning in
the fixed information model arise through common rationalizability, rather than through
incentive compatibility constraints on learning across decision problem. Nevertheless, a
fixed information model is a special case of capacity constraints with a singleton feasible set,
so that the models are nested.

In order to simplify the proof of Proposition 4 and because it is of inherent interest, we
isolate a monotonicity property of the indirect value difference function in a separate Lemma
4.
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Lemma 4. The indirect value difference function is increasing in the Blackwell order. For
Q as element-wise informative as Q̄,

D(Q|u) ≥ D(Q̄|u)

Thus, among feasible sets of information structures characterized in Theorem 2, the function
is minimized at the set of revealed information structures.

Proof of Lemma 4. Fix two tuples of information structures Q, Q̄ ranked element-wise in
the Blackwell order, Qm ⪰ Q̄m for all 1 ≤ m ≤ M . By definition (18) of the direct value
difference function and definition (15) of the Blackwell order, we have:

Dm
0 (Qn|u) = G(Qn|Am, u) − Ḡm(u) ≥ G(Q̄n|Am, u) − Ḡm(u) = Dm

0 (Q̄n|u)

for all 1 ≤ m, n ≤ M . The desired inequality then follows elementwise by definition (19) of
the indirect value difference function:

Dmn(Q|u) = max
h⃗∈H(m,n)

J (⃗h)∑
j=1

Dhj

0 (Qhj+1 | u)

≥ max
h⃗∈H(m,n)

J (⃗h)∑
j=1

Dhj

0 (Q̄hj+1 | u)

= Dmn(Q̄|u)

Finally, the fact that D(·|u) is minimized among all rationalizable tuples at the revealed tuple
of information structures Q̄ follows immediately from the fact that this is the element-wise
least informative tuple in the rationalizable set, by Theorem 2.

Proof of Proposition 4. We consider the cases of costly and capacity constrained learning
concurrently, since the logic is essentially the same. Suppose u : Z → R is consistent
with costly or capacity constrained learning, in the sense that there exists some tuple of
information structures Q that rationalizes the observed data under the respective models.
By Theorem 2 and Proposition 2, Q is then element-wise as informative as the revealed
information structures Q̄ and satisfies, respectively, (G-NIC) or (G-NIS). By monotonicity
of the indirect value difference function (Lemma 4), we have in each case:

diag(D(Q̄|u)) ≤ diag(D(Q|u)) = 0
D(Q̄|u) ≤ D(Q|u) ≤ 0

In the first case, we also have by construction that diag(D(Q̄|u)) ≥ 0, which joint with the
preceding inequality implies:

diag(D(Q̄|u)) = 0
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Since Q̄ is trivially as informative as itself, it follows by Theorem 2 and Proposition 2
that conditions (30) and (31) hold, and thus that the revealed information structures also
rationalize the data in each case.

Conversely, suppose a utility function is inconsistent with the costly or capacity con-
strained model. Since revealed information Q̄ is again trivially as informative as itself, the
characterizations of Theorem 2 and Proposition 2 imply that the conditions (30) and (31)
must be violated, respectively.

As a preliminary to the final Proposition 5, it is helpful to isolate two observations. First,
the characterization of capacity constrained learning is possible in terms of both the direct or
indirect value difference functions. While we have used the indirect version for consistency
in the remainder of the paper, the counterfactual switches of lottery for utility recovery will
be more easily expressible in terms of the direct function.

Lemma 5. Condition (G-NIS) holds if and only if there is no benefit from any direct switch
of information across decision problem:

Dm
0 (Qn|u) ≤ 0 ∀ 1 ≤ m, n ≤ M (48)

In this case, the indirect and direct value difference functions also coincide:

Dmn(Q|u) = Dm
0 (Qn|u) ∀ 1 ≤ m, n ≤ M (49)

Proof of Lemma 5. If (G-NIS) holds, the definition (19) of D(Q|u) and the fact that the
simple path (m, n) is a candidate attention path in H(m, n) imply (48). Conversely, if
(48) holds, then this simple path (m, n) is also optimal in H(m, n) for the computation of
Dmn(Q|u), which implies the equality (49) and thus also (G-NIS). Note that (49) may hold
even when (G-NIS) does not; such an example (26) is provided in Subsection 5.1.

Additionally, Propositions 4 and 5 are logically equivalent but differ in their perspective.
The following Lemma 6 clarifies the relations between their respective objects, gross expected
utility and prize lotteries.

Lemma 6. Gross expected utilities and (switched) lotteries are related by:

Ḡm(u) = L̄m · u (50)

G(Q̄n|Am, u) = max
s∈Smn

Ls · u (51)

where u = (u(z1), . . . , u(zK)) is expressed in vector notation.
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Proof of Lemma 6. Beginning with equation (50),

Ḡm(u) =
∑
a∈A

∑
ω∈Ω

P m(a, ω)u(z(a, ω)) by (16)

=
K∑

k=1

∑
a∈A

∑
ω∈Ω

P m(a, ω)I{z(a, ω) = zk}u(zk) by expansion

=
K∑

k=1
L̄m

k u(zk) = L̄m · u by (33)

For equation (51),

G(Q̄n|Am, u) =
∑

γ̄∈Γ(Q̄n)
Q̄n(γ̄)

[
max
b∈Am

U(b|γ̄, u)
]

by (39)

=
∑
a∈A

P n(a)
[
max
b∈Am

U(b|γ̄a
n, u)

]
decomposing terms

= max
s∈Smn

∑
a∈A

P n(a)U(s(a)|γ̄a
n, u) by definition of s, Smn

Focusing on the maximand of the last line for a given switch s ∈ Smn,∑
a∈A

P n(a)U(s(a)|γ̄a
n, u) =

∑
a∈A

∑
ω∈Ω

P n(a)γ̄a
n(ω)u(z(s(a), ω)) by (4)

=
∑
a∈A

∑
ω∈Ω

P n(a, ω)u(z(s(a), ω)) by (1)

=
∑
a∈A

∑
ω∈Ω

P s(a, ω)u(z(a, ω)) by (32)

=
K∑

k=1

∑
a∈A

∑
ω∈Ω

P s(a, ω)I{z(a, ω) = zk}u(zk) by expansion

=
K∑

k=1
Ls

ku(zk) = Ls · u by (34)

Plugging back into the preceding block of derivations yields the desired equation (51).

Proof of Proposition 5. We prove Proposition 5 by establishing its equivalence with Propo-
sition 4. Specifically, u ∈ S∗ iff u satisfies (G-NIS), and u ∈ C∗ iff u satisfies (G-NIC).

Beginning with the first equivalence, suppose u ∈ S∗. By definition of S∗ and since
−[Ls − L̄ms ] ∈ S,

[Ls − L̄ms ] · u ≤ 0 ∀ s ∈ S (52)

Optimizing over s ∈ Smn,[
max

s∈Smn
Ls · u

]
− L̄m · u ≤ 0 ∀ 1 ≤ m, n ≤ M
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Plugging in from (50) and (51) in Lemma 6 and the direct value difference definition (18),

Dm
0 (Q̄n|u) ≡ G(Q̄n|Am, u) − Ḡm(u) ≤ 0 ∀ 1 ≤ m, n ≤ M

By Lemma 5, this implies (G-NIS). Conversely, suppose (G-NIS). Reversing the preceding
logic implies (52), which extends to the entire cone S. Therefore u ∈ S∗.

For the second equivalence, suppose u ∈ C∗. By definition of C∗ and since −[Lc − L̄c] ∈ C,

[Lc − L̄c] · u ≤ 0 ∀ c ∈ C (53)

Expanding the definitions (35) and multiplying by J (⃗hc) > 0,

J (⃗hc)∑
j=1

[
Lscj − L̄hcj

]
· u ∀ c ∈ C

Alternatively enumerating cycles and optimizing,

max
h⃗∈H(m,m)

J (⃗h)∑
j=1

[[
max

s∈Shj hj+1
Ls · u

]
− L̄hj · u

]
≤ 0 ∀ 1 ≤ m ≤ M

Plugging in from (50) and (51) in Lemma 6 and the direct and indirect value difference
definition (18) and (19),

Dmm(Q̄|u) = max
h⃗∈H(m,m)

J (⃗h)∑
j=1

Dhj

0 (Q̄hj+1 |u) ≤ 0 ∀ 1 ≤ m ≤ M

which is (G-NIC). Again, reversing the preceding logic implies (53), which extends to the
entire cone C∗. Therefore u ∈ C∗.

B Floyd–Warshall Algorithm

The Floyd–Warshall algorithm takes as an input a directed graph with weight W (i, j) on
the vertex from node i to node j and cycles through these weights for all 1 ≤ i, j, k ≤ M ,
identifying when W (i, j) > W (i, k) + W (k, j) and correspondingly reducing it to equality by
setting W

′(i, j) := W (i, k) + W (k, j). The key step in using the Floyd–Warshall algorithm
for our purposes is to construct a complete weighted directed graph with M nodes, with the
weight W (m, n) = −Dm

0 (Qn|u) on the directed edge from node m to node n. By definition,

−Dmn(Q|u) ≡ min
{h⃗∈H(m,n)}

J (⃗h)∑
j=1

−Dhj

0 (Qhj+1
, u)
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In graph-theoretic terms, H(m, n) identifies the set of all non-repeating directed paths from
node m to node n in the graph. For any such path, the sum on the RHS is precisely the
sum of these weights. Hence, Dmn(Q|u) defines the minimal sum of weights on all directed
paths from m to n, and the Floyd–Warshall algorithm efficiently identifies all such paths.

An important property of the Floyd-Warshall algorithm is that it only recovers the true
weighting matrix (in our case, the indirect value difference matrix) when no cycles exist (G-
NIC is satisfied). Nevertheless, this is readily verifiable from the diagonal of the algorithm
output matrix, which is identically zero if and only if no cycles exist. Thus, while the Floyd-
Warshall algorithm may not always recover the matrix of interest, it still suffices for the joint
purposes of verifying consistency and, in the case where consistency is satisfied, recovering
the true indirect value difference matrix.
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