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We provide a characterisation of choice behaviour generated by a Bayesian expected utility
maximiser. The observable signature of this standard model is the impossibility of raising utility by
switching wholesale from one action to another. We provide applications to robustness, to the
recovery of utility from choice data and to model classification.

There is a standard approach to modelling signal processing and choice. Decision-
makers start out with prior beliefs concerning an underlying state of the world that
determines the pay-offs to all actions. They receive additional signals concerning this
state and update their priors in a Bayesian manner. Their final choice of action
maximises expected utility given these posterior beliefs.

From an applied point of view, the devil is in the details. In a typical application it
is impossible to know what form private signals take, let alone how well they are
understood. By way of example, consider jurors in a trial. Even if one tightly monitors
the trial, one cannot know how the proceedings were translated into informative
signals concerning the guilt or innocence of the defendant. Nor can one know how
such signals were processed. Is it accurate to model jurors as having perceived all
information perfectly? Should we instead model them as perceiving noisy signals? If
so, what form should these signals take and from what distribution should they be
drawn? When there is no clear answer to these questions, it seems sensible to ask what
we can say if we make no assumptions about the exact form of information
processing.

In this study, we identify the limits that the standard model of Bayesian expected
utility (BEU) maximisation places on behaviour if no assumptions are made about
underlying signals. These limits are summarised by a set of linear inequalities on the
state-dependent stochastic choice of actions. These ‘no improving action switches’
(NIAS) inequalities have a simple interpretation: it is impossible to improve utility by
making wholesale switches from one action to another. While the necessity of the NIAS
inequalities is clear, the sufficiency of the inequalities is more surprising. If they apply,
there is always some specification of private signals and utilities that rationalises the
data.

We present three applications of the NIAS inequalities. In the first application, we
make predictions for behaviour that are ‘robust’ to the exact form of signal processing.
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This is analogous to the robust predictions for games of incomplete information
found in Bergemann and Morris (2013a) (see subsection 6.1). In a jury voting
example, we show that when the defendant is more likely to be innocent, the standard
model robustly predicts low levels of Type I error (voting to convict an innocent
person) but puts no restriction on the degree of Type II error (voting to acquit a guilty
person).

In our second application we illustrate the bounds that the NIAS inequalities
place on utility. Even when ordinal rankings cannot be identified, the NIAS
inequalities establish bounds on the relative strength of preference for one prize
over another.

In our final application, we use the NIAS inequalities to identify whether or not
prominent forms of boundedly rational behaviour can be rationalised with a standard
Bayesian model. This is a non-trivial question as there are many different models of
choice that produce the same behaviour (Richter, 2011).1 We show that models based
on ‘consideration sets’ (such as those of Masatlioglu et al., 2012; Manzini and Mariotti,
2014) produce behaviours that violate the NIAS inequalities, hence cannot be so
rationalised. The same applies to behaviours generated by procedural models of list
order search, such as that of Rubinstein and Salant (2006). We show also that the
standard logit model of discrete choice, although sometimes motivated by cognitive
limits (McKelvey and Palfrey, 1995), is inconsistent with the standard Bayesian model.

The second and third applications are similar in spirit to the work of Salant and
Rubinstein (2008), who show conditions under which choices that are distorted by a
‘frame’ can be explained by a transitive binary relation, and Rubinstein and Salant
(2011), who present a more general framework for determining a welfare ordering
from behavioural data sets. Unlike this work, our article is based on the study of
unobservable information that is ‘relevant to the rational assessment of the alternatives
and thus should not be regarded as a frame’ and thus lies ‘outside the scope’ of their
work (Salant and Rubinstein, 2008, p. 1288).2 Our technical results are also quite
different, as we model the stochastic choice of actions, not deterministic preference
orderings.

In Section 1 we introduce our formal model and establish that the NIAS inequalities
characterise BEU maximisation. In Section 2 we demonstrate use of these inequalities
in restricting behaviour in a jury trial example. In Section 3 we show how to use these
inequalities to bound utilities using choice data. In Section 4 we use the inequalities to
classify behaviour according to whether or not they are rationalisable by the standard
Bayesian model.

In the main result, we treat prior probabilities as observable and known to the
decision-maker. In Section 5 we extend the characterisation to cases in which prior
probabilities are unobservable or decision-makers have a subjective prior. We discuss
strategic analogues and additional applications in Section 6.

1 To illustrate that this is not always obvious, note that a simple satisficing model produces the same
behaviour as a standard model of maximisation in which ‘satisfactory’ items are mutually indifferent and
superior to unsatisfactory items (Tyson, 2008).

2 Caplin and Martin (2013b) combine these traditions by considering the case where frames can distort
attention to decision relevant information.
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1. BEU Representations

1.1. Decision Problem and Data Set

A decision problem is defined by a quadruple (A, X, Ω, l), where A is a finite set of
actions, X is a finite set of prizes, Ω is a finite set of states, and l is the probability
distribution (prior) over states.

Actions may take many different forms:

(i) voting guilty or not guilty in a trial;
(ii) buying or not buying a good;
(iii) choosing one of A positions in a list (Rubinstein and Salant, 2006; Caplin

et al., 2011; Caplin and Martin, 2013a,b); and
(iv) choosing one of A possible prices (Martin, 2012) or

making one of available guesses concerning the number of blue balls in a
display (Caplin and Dean, 2013, 2014).

The underlying state of the world x 2 Ω specifies the precise connection between
actions and prizes. We define each state as a function x : A ? X. The prior
probabilities are summarised by l 2 Γ = D(Ω), with lx the prior probability of
state x.

The data set is a joint distribution over states and action choices. Technically
speaking, given (A, X, Ω), a state-dependent stochastic data set q identifies the
probability distribution over action choices as it depends on the state,

q : X ! DðAÞ:

Let qax be the probability of action a when the state is x.

1.2. Observability

In the first four sections of this study, we assume that the outside observer
(econometrician or model-builder) can observe both the decision problem and the
data set. Because the states in which choices are made is observable, the outside
observer can drop impossible states, so that lx > 0 for all x 2 Ω. In certain applied
settings, the prior probabilities can be estimated, induced or elicited, and it is this
case that we consider in the main body of the text. In Section 5 we consider cases in
which the prior probabilities are unobservable or decision-makers have a subjective
prior.

The applications found in this article are theoretical in nature and do not require
collecting state-dependent stochastic choice data. The feasibility of collecting such data
is established in the experiments of Martin (2012), Caplin and Dean (2013, 2014) and
Caplin and Martin (2013a,b). With additional assumptions concerning stationarity over
time and homogeneity across individuals, such data can be constructed also from
standard observational data.
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1.3. Unobservables

We ask whether unobservables exist that explain the observables as if the decision-
maker:

(i) knows the decision problem (including the prior probabilities);
(ii) obtains signals (private information) about the state;
(iii) uses Bayes’ rule to update the prior; and
(iv) maximises expected utility based on the updated beliefs.

In technical terms, there are three unobservables: an expected utility function; a
perception function and a choice function.3

The expected utility function is defined in standard manner on the prize space,
U : X ! R. The utility that results from taking action a in state x can then be
generated by taking the composition of the utility function and the map between
actions and prizes in this state,

U a
x ¼ U ½xðaÞ�:

The fact that the utility function is defined over prizes implies that if the prize that
action a yields in state x is the same as the prize that action b yields in state υ, then
U a
x ¼ U b

t . While Theorem 1 does not require this assumption, in applications it
provides much of the bite of the NIAS inequalities.

The second and less standard unobservable is a perception function that produces
posterior beliefs. The goal of our theory is not to specify the exact process of signal
extraction and signal processing but rather to characterise general properties
associated with the standard model of signal processing and choice. To that end, we
cut through the details of the signal extraction and processing technology and work
directly with distributions over posterior beliefs.4 Formally, we define a perception
function as a mapping from states of the world into D(Γ), the probability distributions
over the set of beliefs Γ with finite support,

p : X ! DðCÞ:
A generic posterior belief is given by c 2 Γ, with cx the posterior probability of state x.
Letting px(c) be the probability of posterior c in state x, we define Γ(p) as the set of
possible posteriors for perception function p,

CðpÞ ¼ [x2Xfc 2 CjpxðcÞ[ 0g:

The final unobservable is a choice function C that maps possible posteriors to action
probabilities,

C : CðpÞ ! DðAÞ:
We let Ca(c) denote the probability of choosing action a with posterior c 2 Γ(p).

3 As noted above, in Section 5 we add the prior as a fourth unobservable but for now we treat l 2 Γ as
observed.

4 Kamenica and Gentzkow (2011) show that it is without loss of generality to work directly with posterior
beliefs rather than with underlying signals.
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1.4. BEU Representation

For p and C to provide a possible explanation of the data set requires that their
composition generates the data set. To make them consistent with the standard model
of signal processing, we insist that p satisfies Bayes’s rule. To ensure consistency with
the standard model of choice, we insist that C maximises expected utility. A BEU
maximising representation is defined by satisfying these three conditions.

DEFINITION 1. (p, C, U) is a BEU representation of (A, X, Ω, l, q) if it satisfies:

(i) Data matching: For all x 2 Ω and a 2 A,

qax ¼
X

c2CðpÞ
pxðcÞCaðcÞ:

(ii) Bayesian updating: For all x 2 Ω and c 2 Γ(p),

cx ¼ lxpxðcÞP
t2X ltptðcÞ

:

(iii) Maximisation: For all c 2 Γ(p) and a 2 A such that Ca(c) > 0,X
x2X

cxU
a
x �

X
x2X

cxU
b
x all b 2 A;

with the inequality strict for some c 2 Γ(p) and a, b 2 A.

We require strictness in the utility comparison of some pair of actions in some state
to prevent the conditions from being trivially satisfied by a utility function with all
prizes indifferent.

1.5. The NIAS Theorem

In our data set, BEU maximisation is characterised by the impossibility of raising utility
by switching wholesale from one action to another. This condition is formalised in the
NIAS inequalities.

DEFINITION 2. Utility function U : X ! R satisfies the NIAS inequalities with respect to
(A, X, Ω, l, q), if, X

x2X
lxq

a
xU

a
x �

X
x2X

lxq
a
xU

b
x;

for all a, b 2 A, and the inequality is strict for some a, b 2 A.

The main result is that the NIAS inequalities characterise BEU representations.
Theproof of thenecessity of theNIAS inequalities follows directly from thedefinitionof a
BEU representation. The inequalities in maximisation become the inequalities in NIAS
when we use data matching to turn the unobservable p and C into the observable q.

The sufficiency of the NIAS inequalities is established by constructing a BEU
representation based on any utility function that satisfies the NIAS inequalities. The
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first step is to construct a perception function using the observed data. In this step, we
use the data to construct a ‘revealed’ posterior belief for each action. The second step
is to determine a choice function that rationalises the data on the basis of this
perception function. This step is straightforward when all actions are associated with
distinct posteriors. However, we must also allow for cases in which the perception
function maps more than one action to the same posterior. It is to cover this case that
we need the choice function C to allow for mixing.

THEOREM 1. (A, X, Ω, l, q) has a BEU representation if and only if there exists
U : X ! R satisfying the NIAS inequalities.

Proof. Necessity: Suppose that (p, C, U) define a BEU of (A, X, Ω, l, q). We show
directly that U : X ! R must satisfy the NIAS inequalities. Note first that from
maximisation, given any c 2 Γ(p) and a 2 A,

CaðcÞ
X
x2X

cxU
a
x

 !
�CaðcÞ

X
x2X

cxU
b
x

 !
all b 2 A:

Adding up across c 2 Γ(p), using the Bayesian updating property to substitute for cx,
changing order of addition, and cancelling common terms ∑υ 2 Ωlυpυ(c) > 0 in all
denominators, we derive,

X
x2X

lx
X

c2CðpÞ
pxðcÞCaðcÞ

2
4

3
5U a

x �
X
x2X

lx
X

c2CðpÞ
pxðcÞCaðcÞ

2
4

3
5U b

x all b 2 A:

We now use data matching to substitute for the inner summations and derive,X
x2X

lxq
a
xU

a
x �

X
x2X

lxq
a
xU

b
x;

verifying the all NIAS inequalities hold at least weakly. To confirm that at least one
such inequality is strict, pick a, b 2 A and c 2 Γ(p) with Ca(c) > 0 for which
maximisation holds strictly,

CaðcÞ
X
x2X

cxU
a
x

 !
[CaðcÞ

X
x2X

cxU
b
x

 !
:

Repeating other steps from this point forward reveals that the corresponding NIAS
inequality holds strictly, X

x2X
lxq

a
xU

a
x [

X
x2X

lxq
a
xU

b
x:

Sufficiency: Consider a function U : X ! R that satisfies the NIAS inequalities with
respect to (A, X, Ω, l, q). We now identify �p and �C such that ð�p; �C ; U Þ provides a BEU
representation of (A, X, Ω, l, q). First, define chosen actions �A � A as all those for
which qax [ 0 some x 2 Ω. Given a 2 �A and x 2 Ω, define the corresponding
posterior �cax by,
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�cax � lxq
a
xP

t2X ltqat
:

To complete the construction, first partition the set of possible actions into P ≤ J
sets �AðpÞ with identical posteriors �cðpÞ within each such set and distinct posteriors in
each such set. Hence, a; b 2 �AðpÞ if and only if �ca ¼ �cb ¼ �cðpÞ, so for a; b 2 �AðpÞ and
x 2 Ω, X

t2X
ltq

b
t ¼ lxq

b
x

P
t2X ltq

a
t

lxqax

� �
: (1)

Now define the perception function to have domain Cð�pÞ ¼ [P
p¼1�cðpÞ; and specific

values,

�px½�cðpÞ� ¼
X

b2 �AðpÞ
qbx: (2)

Finally, define the choice function to satisfy,

�Ca ½�cðpÞ� ¼

X
t2X ltq

a
tX

b2 �AðpÞ
X
t2X

ltq
b
t

2 ð0; 1� if a 2 �AðpÞ;

0 if a 62 �AðpÞ:

8>><
>>: (3)

To confirm that this construction identifies a BEU, we first establish data matching.
By construction, given x 2 Ω and a 2 �AðpÞ, we know that �Ca ½�cðpÞ� ¼ 0 unless a 2 �AðpÞ.
Hence, for each x 2 Ω and a 2 �AðpÞ,

X
c2Cð�pÞ

�pxðcÞ �CaðcÞ ¼
XP
p¼1

�px �cðpÞ½ � �Ca �cðpÞ½ � ¼
XP
p¼1

X
b2 �AðpÞ

qbx

2
4

3
5

X
t2X ltq

a
tX

b2 �AðpÞ
X

t2X ltq
b
t

2
4

3
5; (4)

which follows directly from substitution of (2) and (3). Now note from (1) that

X
b2 �AðpÞ

X
t2X

ltq
b
t ¼

X
b2 �AðpÞ

lxq
b
x

P
t2X ltq

a
t

lxqax

� �
: (5)

Substitution of (5) in the denominator in (4) yields

XP
p¼1

�px �cðpÞ½ � �Ca �cðpÞ½ � ¼
XP
p¼1

X
b2 �AðpÞ

qbx

2
4

3
5 lxq

a
xP

b2 �AðpÞ lxqbx

" #
¼
XP
p¼1

P
b2 �AðpÞ lxq

b
xq

a
xP

b2 �AðpÞ lxqbx

¼qax
XP
p¼1

P
b2 �AðpÞ lxq

b
xP

b2 �AðpÞ lxqbx

" #
¼ qax;

in confirmation of data matching.
To confirm Bayesian updating, note as a result of data matching that for all x 2 Ω,

1 � p � P ;�cðpÞ 2 CðpÞ and a 2 �AðpÞ,

© 2014 Royal Economic Society.

190 TH E E CONOM I C J O U RN A L [ F E B R U A R Y



�cxðpÞ ¼
lxq

a
xP

t2X ltqat
¼ lx�px �cðpÞ½ � �Ca �cðpÞ½ �P

t2X lt�pt �cðpÞ½ � �Ca �cðpÞ½ � ¼
lx�px �cðpÞ½ �P
t2X lt�pt �cðpÞ½ � :

Finally, note that for each x 2 Ω,1 ≤ p ≤ P and a 2 �AðpÞ

lxq
a
x ¼ �cxðpÞ

X
t2X

ltq
a
t :

Substitution in the NIAS inequalities and division by the constant
P

t2X ltq
a
t [ 0 yieldX

x2X
�cxðpÞU a

x �
X
x2X

�cxðpÞU b
x;

for all x 2 Ω, 1 ≤ p ≤ P and a 2 �AðpÞ, with the inequality strict for some a; b 2 �A. This
establishes maximisation and completes the proof.

The above result is robust in a number of senses. First, in typical cases the perception
function defined in (2) above will assign just one posterior to each action. In such cases
the choice function specified in the proof is deterministic, so mixing is not required.
Second, to strengthen the requirements for a BEU representation to ensure that all
actions are uniquely optimal at the corresponding posteriors requires only the
corresponding strengthening of the NIAS inequalities. Finally, while we treat the prior
as observable in the above proof, we show in Section 5 that an analogous result applies
when the prior is not observable.

Note that each NIAS inequality imposes a linear constraint on prize utilities.
Existence of a utility function that validates all such inequalities corresponds to
establishing non-emptiness of the intersection of ( J � 1)2 linear inequalities. This can
be checked using standard linear programming methods.

Afriat (1967) similarly provided a set of data-defined linear inequalities such that a
solution to the inequalities exists if and only if a non-satiated utility function exists that
rationalises the data. While not directly comparable because they are based on
deterministic choices from budget sets, Afriat’s inequalities have a conceptual link with
our constraints in that they both treat the utility function as unobservable.

2. Robust Prediction

Our first application of the NIAS inequalities is to produce predictions for behaviour
that are robust to assumptions about information processing. To illustrate, we use an
example of a juror in a criminal trial, as inspired by the lead example in Kamenica and
Gentzkow (2011) and Bergemann and Morris (2013a,b). A defendant is either
innocent (state I) or guilty (state G). The juror can acquit (action A) or convict (action
C). The prior probability of innocence is lI 2 (0, 1). Finally, two parameters define the
data set: the probability of voting to acquit when the defendant is either innocent or
guilty, aI � qAI and aG � qAG .

In analysing the outcome of the trial, the following statistics are of central interest:

(i) the overall probability of voting to acquit is lIaI + (1�lI)aG ;
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(ii) the probability of voting to convict an innocent party, known as Type I error, is
1 � aI ;

(iii) the probability of voting to acquit a guilty party, known as Type II error, is aG ;
and

(iv) the overall probability of a mistaken vote is lI(1�aI) + (1�lI)aG .

In this illustration, we use the NIAS inequalities to indicate when it is possible to
robustly predict a low level of Type I error (voting to convict an innocent party) or
Type II error (voting to acquit a guilty party).

2.1. NIAS Inequalities and Limits on Behaviour

We assume that the juror prefers voting correctly: to acquit if the defendant is innocent
and to convict if the defendant is guilty. As a starting point, we follow Kamenica and
Gentzkow (2011) and Bergemann and Morris (2013a,b) in assuming that the juror only
cares about voting correctly and in normalising the utility of voting correctly to 1 and
the utility of voting incorrectly to 0.

It is intuitively clear that the choice data produced by a BEU maximiser must satisfy
certain conditions. For example, if the probability of innocence is high, there must be
high likelihood of voting to acquit. The NIAS inequalities provide these intuitive
restrictions in a concise and precise manner. The NIAS inequality for voting to acquit
simplifies to

aI � 1� lI
lI

� �
aG :

The NIAS inequality for voting to convict simplifies to

aI � 2� 1

lI

� �
þ 1� lI

lI

� �
aG :

As always, at least one inequality must be strict.5

With an even prior (lI = 0.5), the NIAS inequalities assert that aI > aG, which means
that the juror must be correct strictly more than 50% of the time. It is clear that this is
necessary for there to exist a BEU representation. That it is also sufficient shows that
being very good at correctly identifying an innocent party can be consistent with being
very bad at correctly identifying a guilty party (and vice versa) without requiring non-
Bayesian reasoning or caring about the type of error committed. If correct on
innocence 99% of the time (aI = 0.99), such a juror can be incorrect on guilt up to
98% of the time (aG = 0.98).

Despite the reach of the standard model, precisely 50% of all conceivable data sets
are ruled out by this condition, as illustrated by the shaded region beneath the main
diagonal in Figure 1. As the prior becomes more uneven, the implied restrictions on
choice data become stronger. To illustrate, the larger shaded region in Figure 1

5 With lI < 0.5 the second inequality is non-binding and must hold strictly, whereas with lI > 0.5 the first
inequality is non-binding, hence strict. When lI = 0.5, the inequalities are identical so that both must hold
strictly.
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indicates the choice probabilities that cannot be rationalised when the prior
probability of innocence is lI = 1/3, in which case the relevant inequality identifying
existence of a BEU is

aI � 2aG :

Note that 75% of all conceivable data sets are ruled out by this condition.

2.2. Type I and Type II Error

Note that when lI = 1/3, there is no absolute restriction on Type I error (voting to
convict an innocent person), whereas the rate of Type II error (voting to acquit a guilty
person) cannot be above 50%. As the probability of innocence falls, the upper bound
on Type II error falls.

The bounds on errors are interdependent. If aI = 0, so that the juror always makes a
Type I error, then must be no Type II error. If aI = 1, so that the juror never makes
Type I error, then there can be up to a 50% rate of Type II error. Between these
extremes, the relationship between the Type I error and the maximum Type II error is
linear.

Finally, note that when the defendant is more likely to be innocent, say lI = 2/3, the
relationship between Type I and Type II errors reverses. For example, there is no
absolute restriction onType II errors, whereas theType I error rate cannot be above 50%.

2.3. Caring About Errors

We now allow for the juror to dislike Type I errors (voting to convict an innocent
defendant) differently from Type II errors (voting to acquit a guilty defendant).

0.0 0.2 0.4 0.6 0.8 1.0
αG

α I

1.0

0.8

0.6

0.4

0.2

Fig. 1. Robust Predictions for lI = 0.5 and lI = 1/3.
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We partially continue the normalisation from before, so that the utility of voting
correctly is 1 and the utility of making a Type II error is 0. However, now the utility of
making a Type I error is u < 1. For values of u 2 (0, 1), the juror dislikes Type II error
more than Type I error, while the converse holds for u < 0.

The NIAS inequality for voting to acquit now simplifies to,

aI � 1� lI
ð1� uÞlI

� �
aG ;

while the NIAS inequality for voting to convict simplifies to

aI � 2� u

1� u
� 1

ð1� uÞlI

� �
þ 1� lI

ð1� uÞlI

� �
aG :

The restrictiveness of the NIAS inequalities now depends both on the prior and on
the value of u. With lI = 0.5 and u = �1, the inequality is,

aI � 1

2
þ 1

2
aG :

This implies that the juror must correctly vote to acquit the innocent at least 50% of
the time, with this bound becoming ever more restrictive the more they incorrectly
acquit the guilty. Keeping this same prior and increasing the asymmetry in the utility
function to the point where u = �9, the constraint becomes,

aI � 9

10
þ 1

10
aG ;

so that the juror must correctly acquit the innocent at least 90% of the time. Fully 95%
of all conceivable data sets are ruled out by this condition, as illustrated by the larger
shaded region in Figure 2.

1.0

0.6

0.8

0.4

0.2

0.0 0.2 0.4
αG

α I

0.6 0.8 1.0

Fig. 2. Robust Predictions for u = �1 and u = �9, when lI = 0.5.
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Looking across these examples, with lI = 0.5 and u = 0, there are no restrictions on
Type I error but with, u = �1, we see a substantial restriction on the rate of Type I
error. As would be expected, with u = �9, we see even tighter restrictions on the
probability of a Type I error.

3. Bounds on Expected Utility

The NIAS inequalities allow us to use choice data to place bounds on unknown utilities
even when the exact form of information processing is unspecified. Even when ordinal
rankings cannot be determined, the NIAS inequalities establish bounds on the relative
strength of preference for one prize over another.

To illustrate, consider again the example of the previous Section, but where the
relative importance of Type I and Type II errors in the juror’s utility function is
unknown. Again this is determined by a single parameter, u < 1, the utility of Type I
error.

In technical terms, we use the NIAS inequalities to constrain u. The inequality that
makes voting to acquit at least as beneficial to the juror as voting to convict simplifies to,

u� 1� 1� lI
lI

� �
aG
aI

� �
:

The NIAS inequality that makes voting to convict at least as beneficial as voting to
acquit simplifies to,

u� 1� 1� lI
lI

� �
1� aG
1� aI

� �
:

Overall the requirement is,

1� 1� lI
lI

� �
aG
aI

� �
� u� 1� 1� lI

lI

� �
1� aG
1� aI

� �
;

with at least one inequality strict.
To see how the NIAS inequalities constrain relative error costs, consider first a case

with lI = 0.5, aI = 2/3 and aG = 1/3. In this case the inequalities assert

1

2
� u� � 1:

These constraints do not pin down whether Type I or Type II error is worse because the
utility of Type II error is zero. Rather, the inequalities constrain the ratio of the losses
associated with Type I errors relative to Type II errors.

In fact, with lI = 0.5, the bounds are on the opposite sides of zero for any choice
data,

1� aG
aI

� u� 1� 1� aG
1� aI

:

Hence, one cannot know ordinal rankings of Type I and Type II error for this prior.
However, in the limit as aI approaches aG, the utility function is almost exactly pinned
down. For lI = 0.5, in the limit as aI approaches aG, the juror must be close to
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indifferent between Type I errors and Type II errors. The bounds tighten when the
conditional choice probabilities get closer because there is less room for imperfect
perception to explain variation in choice.

When the prior is uneven, it may be possible to pin down which type of error is worse
and also to provide bounds on the extent of the difference. For example, with lI = 1/
4, the inequality becomes,

1� 3
aG
aI

� �
� u� 1� 3

1� aG
1� aI

� �
:

For example, when aI = 2/3 and aG = 1/3, the requirement is,

� 1

2
� u� � 5:

In this case it is known for sure that Type I errors are regarded as worse than Type II
errors. Again, the precise extent of this preference is not known but, in the limit, as aI
falls towards aG, the utility function is almost fully pinned down. In this case, the utility
bounds tighten around u = �2.

4. Model Classification

The NIAS inequalities can be used to classify models of choice as either consistent or
inconsistent with BEU maximisation directly from the choice data they produce. To
match a typical application in the literature on bounded rationality, we now consider a
consumer choosing between two goods x1 and x2. The consumer strictly prefers
product x1, and the corresponding utility function is normalised to U(x1) = 1 and U
(x2) = 0. However, the goods look somewhat similar and are put side-by-side on a shelf.
Hence, it may be hard for the consumer to determine which good is which.

The consumer can choose the good on the left (action L) or choose the good on the
right (action R). The preferred good is either on the left (state l) or on the right (state
r), with the prior ll 2 (0, 1) identifying the probability that it is on the left. The two
parameters that define the data set are kl � qLl , kr � qLr , the probabilities of picking
the good on the left in either state.

4.1. Stochastic Consideration of Prizes

The bounded rationality literature offers many approaches to modelling imperfect
perception. Manzini and Mariotti (2014) propose a form of stochastic consideration
where a prize xn is considered with probability gn 2 (0, 1) and the optimal option
inside the consideration set is chosen.6 The default choice for an empty consideration
set is left unspecified. In this example, we assume that the default choice gives the
decision-maker an inferior good x3 with certainty.

The data produced by this theory reflect the fact that x1 is chosen if considered and
x2 is chosen only if it is the only prize considered,

6 Alternatively, Manzini and Mariotti (2007) and Masatlioglu et al. (2012) consider models of deterministic
consideration of prizes.

© 2014 Royal Economic Society.

196 TH E E CONOM I C J O U RN A L [ F E B R U A R Y



kl ¼ g1;

kr ¼ ð1� g1Þg2:
To illustrate failure of the NIAS conditions, note that substituting this data into the
NIAS inequality for action L produces,

g1 �
ð1� llÞg2

ll þ ð1� ll Þg2
;

which is clearly violated when g1 and ll are small.
Note that in this simple example it is hardly surprising that the stochastic

consideration set model produces failures of updating. After all, it is trivial for
Bayesians to select the best prize if they examine just one prize: if the prize is x1 it
should be chosen, otherwise the unseen prize should be chosen.

4.2. Stochastic Consideration of Actions

Rubinstein and Salant (2006) describe a choice procedure that consists of searching a
fixed number of positions in a list and then selecting the best searched option. In our
language, such a procedure produces deterministic consideration of actions. To be
more precise, let the action of choosing the first position in a list be a1. Searching the
first position in a list is equivalent to determining the prize associated with action a1.
Caplin and Dean (2011) study analogous models of search, but allow for stochasticity
in the order of search. This gives rise to stochastic consideration of actions.

To study stochastic consideration of actions, we amend the earlier analysis by
interpreting g1 as the probability that action L is considered. The data produced by this
theory reflect the fact that action L is selected if and only if it is considered and gives
the best prize of the considered actions,

kl ¼ g1;

kr ¼ g1ð1� g2Þ:

Substituting this data into the NIAS inequality for action L produces a constraint on
the consideration of the other action,

g2 �
1� 2ll
1� ll

;

which is clearly violated when g2 and ll are small.

4.3. Logit Demand

One of the most important models of discrete choice is the logit model. This form of
demand is sometimes motivated as resulting from imperfect cognition (McKelvey and
Palfrey, 1995). However, we show the standard version of this model it is not consistent
with BEU maximisation. To establish this, we simply analyse whether or not the
associated stochastic choice data satisfy the NIAS inequalities.
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Logit demand, which arises when errors follow an extreme value distribution,
produces the following data,

kl ¼ e
1
j

1þ e
1
j

;

kr ¼ 1

1þ e
1
j

;

where j > 0 is a parameter of the distribution. By way of interpretation, when the good
prize is on the left, it is seen as being on the left with a probability that is increasing in
how much better it is than the prize on the right. In this sense, rewards shrink
stochastic errors.

To illustrate failure of the NIAS conditions, note that substituting this data into the
NIAS inequality for selecting the good on the left produces

e
1
j � ð1� llÞ

ll
;

which is violated whenever j > 1/ ln [(1�ll)/ll]. To understand why logit demand
cannot be rationalised in a Bayesian manner, note that prior beliefs play no role in
determining stochastic choice. With a sufficiently uneven prior, logit demand is
inconsistent with the NIAS inequalities.

On the other hand, Mat�ejka and McKay (2011) show that a more generalised form of
logit demand can be produced with rational inattention theory (Sims, 2003). In this
example, that logit demand would be:

kl ¼ e
1
j

e
1
j � 1

� e
1
j

ll e
2
j � 1

� � ;

kr ¼
ð1� llÞe 1j ll � e

1
j � 1
e
2
j � 1

� �

e
2
j � 1

� � :

Substituting this data into the NIAS inequality for selecting the good on the left
produces

e
2
j � e

1
j

e
2
j � 1

� 1

2
;

which is always satisfied because as j approaches 0, the limit of the left-hand side is 1
and, as j approaches ∞, the limit of the left-hand side is 1/2. Thus, not surprisingly,
this form of logit demand satisfies the standard assumptions.7

7 Because of the symmetry in pay-offs and attentional costs, we need to consider only one of the
constraints.
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5. Unobservable Prior Probabilities or Subjective Priors

The characterisation above treats prior probabilities as observable and commonly
understood between the outside observer and the decision-maker. However, our main
result goes through even when the prior probabilities are not observable or we allow
for the decision-maker to have subjective priors. If we retain also the assumption that
all states are viewed as possible, so that l 2 ΓI, the definition of a BEU representation
remains essentially unchanged and the characterisation result is precisely as before.8

While adding the prior to the set of unobservables adds an additional degree of
freedom to match observables, the NIAS inequalities for this case remain restrictive.
We illustrate the remaining restrictions in a relatively simple example.

EXAMPLE 1. Consider an example with actions a, b, c 2 A, prizes x, y 2 X, and states
x, υ, s 2 Ω. Let prize x be given by action a in state x, action b in state υ and action c in state
s, and prize y otherwise, so that x(a) = υ(b) = s(c) = x and x(b) = x(c) = υ(a) = υ(c) =
s(a) = s(b) = y. Finally, consider the following data set:

ðqax; qbx; qcxÞ ¼
1

3
;
2

3
; 0

� �
;

ðqat ; qbt ; qctÞ ¼ 0;
1

3
;
2

3

� �
;

ðqas ; qbs ; qcsÞ ¼ 0;
2

3
;
1

3

� �
:

For this data, there does not exist a U : X ! R and l 2 ΓI that satisfy the NIAS inequalities.
To confirm this, note first that the NIAS inequalities in this case require that U(x)>U(y). This
follows as with qat ¼ qas ¼ 0, the NIAS inequality for switching action a to action b asserts,

lx
3
U ðxÞ� lx

3
U ðyÞ:

Given that lx > 0, this requires that U(x) ≥ U(y). That the inequality must be strict follows from
the fact that if it is not, then no NIAS inequalities hold strictly as the definition requires.

To complete our demonstration of non-existence, we consider the NIAS inequalities for
switching from action b to action c, and from action c to action b. Noting that there is no loss of
generality in setting U(x) = 1 and U(y) = 0, the required inequalities can be written as

ltq
b
t � lsq

b
s and lsq

c
s � ltq

c
t :

Substitution yields,
lt
3

� 2ls
3

and
ls
3

� 2lt
3

:

Together, these inequalities require lυ = ls = 0, contradicting l 2 ΓI.

8 An open issue is how to characterise choices of a decision-maker with a subjective state space that may
differ from that envisioned by the outside observer. It is important in such cases that the decision-maker’s
state space and prior allow for actions to yield the prizes they have been observed in practice to yield.
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6. Strategic Analogues and Additional Applications

There are several strategic analogues to our model, two of which we discuss in this
section.

6.1. Bayes Correlated Equilibrium

Bergemann and Morris (2013a) study games of incomplete information in which
players may or may not have access to private information about the state. For the case
of one player, they provide a definition of Bayes correlated equilibrium (BCE) for an
arbitrary game G and ‘experiment’ S, where a game G is a triple (A, U, l) and an
experiment S is a set of signals T and an ‘information structure’ p. They define BCE
with an ‘obedience’ condition on the player’s decision rule r: T9Θ?D(A), where Θ is
the set of pay-off relevant states.

The authors show that r is a BCE of (G, S) if and only if, for some ‘expansion’ S* of S,
r is a Bayes–Nash equilibrium (BNE) of (G, S*), where expansion places an ordering
on the informativeness of experiments. In other words, they show that if the player is
playing a BCE for the game G with some information given by S, it is as if they are
playing a BNE for game G with additional information beyond S given by S*.

If there are no restrictions on the player’s possible information, it is analogous to
having the initial experiment S be completely uninformative, so that it contains only
one signal. Such an S is called the ‘null’ experiment and is denoted by S. For the null
experiment, the decision rule reduces to a function r: Θ?D(A), which is the same
observable content as our model, so the NIAS conditions can be applied to this
function.

Not surprisingly, the conditions for the existence of a BNE in a one player game
when information is entirely unobservable (for the null experiment) are identical to
the conditions for a BEU representation. It is immediate from their obedience
condition that r is a BCE of (G, S) for some non-trivial U if and only if U satisfies the
NIAS inequalities.

The chief difference between the approach that we take and that of Bergemann and
Morris is around the observal of utility.9 They treat utility functions as known and
analyse possible equilibrium patterns of behaviour. We treat the data as given and infer
utilities when these data satisfy conditions consistent with equilibrium play. Thus, our
approach can be used to recover bounds on utility functions in the strategic setting just
as it does in the decision theoretic setting. The distinction is that the resulting NIAS
inequalities are joint restrictions on players’ utility functions rather than restrictions
that apply to each individual separately.

6.2. Bayesian Persuasion

Kamenica and Gentzkow (2011) determine necessary and sufficient conditions
characterizing when a sender can benefit from sending a signal to a receiver who

9 However, Bergemann and Morris (2013b) consider inference of utility functions beyond the linear
quadratic normal framework.
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takes a non-contractible action that impacts the utility of both parties. For the finite
action case, the NIAS inequalities give the set of receiver actions that are possible
under some signal choice and some receiver utility function. This statement reflects
two differences between our setting and theirs. First, their action space is infinite rather
than finite. Second, they treat the utility function as known.

6.3. Additional Applications

The centrality of BEU maximisation makes the NIAS inequalities of wide applicability.
Caplin and Martin (2013a) apply the NIAS inequalities to show that observed data
from a laboratory experiment are consistent with a general form of rational
inattention. Caplin and Martin (2013b) extend the NIAS inequalities to categorise
observed framing effects as having resulted from changes in perception or changes in
utility. In a laboratory experiment, they find that explaining default effects requires
distortions in utility. Caplin and Dean (2014) consider a more general environment,
and find that in addition to the NIAS inequalities, a ‘no improving attention cycles’
(NIAC) condition characterises a general form of rational inattention theory. In a
laboratory experiment involving a perception task, they find that subjects conform to
both conditions in many, but not all, circumstances. Martin (2012) uses the NIAS
inequalities to show that play in a strategic pricing experiment is consistent with
rational inattention to quality.
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