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Abstract

We present an algorithm that finds the size of the largest subset of a choice data

set that is consistent with acyclicality. Our algorithm is orders of magnitude more

efficient than existing methods. It can be used to calculate measures of rationality,

such as the Houtman-Maks index and the minimum multiple rationales, that have

been previously impractical. We also develop a new measure of how close a data set

is to rationality. Further, we demonstrate the efficiency of our algorithm on data from

laboratory experiments [Choi et al. 2007] and household consumption data [Blundell,

Browning and Crawford 2003, 2008]. In doing so, we provide previously unavailable

rationality measures for these data sets.

1 Introduction

Much of economic theory is predicated on the assumption that people make choices as if they

are maximizing a stable utility function. Choice data are consistent with this assumption if

the preference information revealed by choice is acyclic.1 If we observe choices from subsets

1Exactly what it is that reveals preference varies from theory to theory (see Varian [2006] for a review).

The Strong Axiom of Revealed Preference (SARP) assumes that  is preferred to  if  is chosen when 

was available. The Generalized Axiom of Revealed Preference (GARP) assumes that  is revealed preferred

to  if  is chosen when  was available at a strictly lower price.
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of some grand set , and the binary relation Â on  represents the (strict) preferences

revealed by those choices, acyclicality means that one cannot find a sequence 1 2, , 

in  such that

1 Â 2 Â  Â  Â 1.

Choice data that satisfy the acyclicality property are rationalizable as the outcome of

utility maximization.2

Acyclicality is a stringent requirement for choice data to satisfy — for example, a single

mistaken choice can lead to an entire data set being classified as ‘irrational’. Unsurprisingly,

in most data sets the acyclicality property is often violated. This is true both for data

generated by laboratory experiments (see for example Choi, Gale, Fisman, and Kariv [2006,

2007]) and for consumption data from the field (see for example Famulari [1995]). The fact

that acyclicality does not hold globally has led to theoretical and empirical work based on

which subsets of a choice data set are consistent with acyclicality.3

Our paper contributes to this research in four ways:

1. We develop a new algorithm for calculating the size of the largest subset of a choice

data set that is consistent with acyclicality. This algorithm is orders of magnitude

more efficient than existing algorithms.

2. We show that this algorithm can be used to implement many existing tools for analyzing

the rationalizability of choice data. The use of these tools has previously been severely

limited by computational constraints.

3. We develop a new measure of how close a particular data set is to rationality that

bridges the gap between previous measures based on the number of irrational choices

and those based on the severity of violations of rationality.

2Assuming that the set of available alternatives is countable.
3See Koo [1963], Houtman and Maks [1985], Famulari [1995], Kalai, Rubenstein and Spiegler [2002],

Blundell, Browning and Crawford [2003, 2008], Crawford and Pendakur [2008], Deb [2008], Apesteguia and

Ballester [2009, 2010], Nobibon et al. [2009].
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4. We use our algorithm to analyze experimental data fromChoi, Gale, Fisman, and Kariv

[2006, 2007] and household consumption data from Blundell, Browning and Crawford

[2003, 2008]. We show that, in practice, our method allows analysis that was previously

impossible, and in doing so we provide previously unavailable rationality measures for

these data sets.

In section 2 we introduce our algorithm for finding the size of the largest subset of a choice

data set that is consistent with acyclicality. We call this problem the maximal acyclical set

problem, or MASP. While testing whether a set of preferences are acyclic is relatively easy,4

MASP is NP-hard. This means that there is no known algorithm with solution times that are

certain to only increase polynomially with the number of choices. The key to our approach

is to show that MASP is equivalent to the minimum set covering problem (MSCP), which is

well studied in the computer sciences and operations research literature. While MSCP is NP-

hard in the strong sense, there are a wide variety of algorithms that are extremely efficient

in solving it for practical cases and are included in standard ‘solver’ software packages (see

Caprara, Toth, and Fischetti [2000]). For any choice data set, we can therefore translate

the associated MASP into an equivalent MSCP, which can then be solved using one of

these software packages.5 Section 2 shows the equivalence between MASP and MSCP, and

describes in detail the algorithm we use to employ MSCP solvers to solve MASP.6

As we show in section 3, the maximal acyclical subset plays a crucial role in several exist-

ing analytical tools. Prior to the development of our algorithm, computational costs meant

that these tools were essentially unusable on reasonable sized data sets. These applications

include:

1. Measuring how close a data set is to rationality. The size of the maximal acyclical sub-

set has been proposed as such a measure of how close a set of choice data is to satisfying

4The Floyd-Warshall algorithm performs this test in a computationally efficient manner.
5Off the shelf algorithms for solving MSCP are included in many software packages that perform opti-

mization (such as Matlab). More powerful solvers are available for free over the Internet (such as SCIP,

GLPK and MINTO) or are available commercially (such as CPLEX).
6A usable version of our algorithm is available at www.––––.com.
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rationality (Koo [1963], Houtman and Maks [1985]).7 Our algorithm increases the size

of data set for which the size of maximal acyclical subset can practically be found, and

allows for the benchmarking of this measure against simulated random choice data, as

proposed by Bronars [1987].8

2. Calculating the minimum number of rationales or ‘types’. Kalai, Rubenstein and

Spiegler [2002] introduce the idea of using multiple ‘rationales’, or preference orderings

to rationalize choice data.9 Of particular interest is the minimum multiple rationales

(MMR) for a data set, or the minimum number of preference orderings necessary to

rationalize a data set. Calculating the MMR measure for a data set is also an NP-hard

problem. Our algorithm provides an efficient way of calculating an upper bound for

the MMR.

3. Identifying choice sets on which to estimate demand correspondences and recover utility

functions. Some nonparametric methods of estimating demand correspondences and

recovering utility functions (such as those used in Varian [1982, 1983]) are only valid

when applied to data that satisfies acyclicality. A maximal acyclical subset is therefore

the largest subset of data set to which such approaches can be applied, so it is a

compelling choice for welfare analysis.10

The flexibility of our approach to solving MASP also allows us to develop a new measure

of how close a particular data set is to rationality. Existing measures focus either on counting

the number of violations of rationality exhibited by a subject (Houtman and Maks [1985]), or

by calculating the severity of these violations (usually in monetary terms, such as in Afriat

7Equivalently, the smallest number of observations that must be removed in order for a data set to be

acyclic.
8See Choi et al. [2006, 2007], Fisman et al. [2007] and Famulari [1995] for cases where computational

constraints have been binding.
9A similar approach has been proposed for household consumption decisions, on the basis that there may

be several types of households in a population (see Crawford and Pendakur [2008]) or because households

consist of different members who may have different preferences (see Cherchye et al. [2007], Deb [2008],

Nobibon et al. [2009]).
10This approach is pursued on the production side by Banker and Maindiratta [1988].
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[1972] and Varian [1990]). In section 4, we propose a new measure that bridges the gap

between these two approaches by modifying the Houtman and Maks (HM) index to allow

for heterogeneity in the strength of revealed preference observations. Instead of finding the

maximal acyclical subset, we find the ‘minimum cost’ way of constructing an acyclical set,

with the cost of removing an observation related to the strength of the related revealed

preference. This addresses an important criticism of the Houtman and Maks approach —

that a data set can be classified as very irrational even though it contains a large number of

acyclical choices caused by the subject being approximately indifferent between the available

alternatives.

In section 5, we use our algorithm to analyze laboratory and field data. We begin by

justifying the central claim of our paper — that our algorithm is in practice much better at

calculating the size of the maximal acyclical set than existing methods. We use three different

test environments: the choice data from the laboratory experiments of Choi et al. [2007],

UK household consumption data used from Blundell, Browning and Crawford [2003, 2008],

and simulated data based on the Choi et al. [2007] environment. We show that, across these

environments, out algorithm is able to cope with data sets between 7 and 20 times greater

than the next best alternative. As the complexity of these problems increases exponentially

with the size of the data set, this means that our algorithm is orders of magnitude more

powerful than those currently in use. Moreover, this gap will only increase as MSCP solvers

improve in performance.11

Our algorithm allows us to calculate various measures of rationality which, until now, have

been insolvable for many choice data sets of interest. In section 5 we also report the results of

these analyses. We describe the Houtman and Maks (HM) scores for the data sets mentioned

above, and how they compare to the random benchmarking. We also report results for our

new measure of rationality and for the MMR. Notably, the number of rationales needed for

any of our data sets is low, even in the case of random data. Finally, we report the correlations

11For ease of use, we selected the callable C library of GLPK as our solver. The performance of our

algorithm could be substantially improved by using a stand-alone solver program. For more details, see

appendix 1.3.

5



of various measures in our observed populations. On the experimental data of Choi et al.

[2007] we find this correlation to be high — over 75% for all pairwise comparisons. We can;

however, identify individuals who perform well according to one measure of rationality, but

poorly relative to another.

2 Solving the Maximal Acyclical Set Problem

In this section we formally define MASP, and describe our algorithm for solving the prob-

lem.12 In doing so, we present the key theoretical result in the paper. A MASP can be

solved by identifying and solving a related minimum set covering problem — a class of prob-

lems which is well studied within the field of operations research. This is both good news

and bad news for solving incidences of MASP. The bad news is that MSCP (and so MASP)

are NP-hard. Appendix 1.2 discusses this concept in more detail, but the implication is that

there is no known method that can guarantee solution times will increase only as a poly-

nomial function of the number of inputs to MASP. In other words, one cannot guarantee

that solution times will not get very large, very quickly as the size of the input data grows.

However, the good news is that researchers in operations research have developed a number

of tools that in practice solve MSCP quickly and exactly for many data sets. The equivalence

we show between MSCP and MASP means that these techniques can be adopted wholesale

for solving MASP.

2.1 Definitions

MASP is the problem of finding the size of the largest subset of a set of choice data that

generates acyclical revealed preference relations. The primitives of the problem are a grand

set of alternatives , a set of observations  and a relation function  :  → 2× that

characterizes a set of binary relations on  generated by each observation in . We call the

12An implementation of this algorithm is available at www.–––-.com/software/.
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triple {} a data set.13

As an example, consider the case of a laboratory experiment in which we observe a subject

making choices from subsets of . Furthermore, assume that we are prepared to say that

the chosen object in any set is strictly preferred to all the other available alternatives.14 In

this case we could think of each observation in  as consisting of a tuple ( ) with  ∈ 

and  ∈ 2∅., implying that alternative  has been observed as being chosen from the

set of alternatives . The function  :  → 2× would then be defined as the revealed

preference relations generated by :

∀ () ∈ 

() = {( ) |  ∈  {}}

We denote by the binary relation Â⊂  × the relations generated by the observation

 ∈ , so that Â=  (). For any  ⊂ , we define the binary relation Â on  as

 Â  if, for some  ∈ ,  Â 

For an arbitrary binary relation Â, a cycle refers to a set of alternatives 1 2   ∈ 

such that 1 Â 2 Â  Â  Â 1. We say that a set of observations  ⊂  is acyclic

if the binary relation Â generated by  contains no cycles. Thus, we define MASP as

the problem of finding the size of the largest subset  ⊂  such that the resulting binary

relation Â is acyclic.

13We assume that  is finite. In this case, we can solve MASP whatever the cardinality of . Moreover,

acyclicality is enough to guarantee that choices can be rationalized by utility maximization even if  is

uncountable. This is because we can concentrate on the (finite) set of objects  that are chosen in any

observation . If the data is acyclic, we can generate a utility function  :  → R that rationalizes choice

between these objects. All remaining alternatives can be assumed to have a utility equal to min∈ ()− 1.
14Note that this assumption is not central to our methodology, which is flexible enough to cope with

almost any definition of revealed preference. For example, if we are observing choices from budget sets, we

could say that  is revealed preferred to  only if  was chosen when  was available at strictly lower cost

(per the Generalized Axiom of Revealed Preference). The precise assumption is defined by the nature of the

mapping .
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Definition 1 The maximal acyclical set problem (MASP) for a data set {} is the
problem of finding the size of a set  ⊂  such that

(i)  is acyclic

(ii) if 0 ⊂  and |0|  || , then 0 is not acyclic

In other words, MASP is the problem of finding the size of the largest acyclical subsets

of . Note that the maximal acyclical set may not be unique.

Next, we define a MSCP. In order to explain the idea behind this class of problems, we

illustrate it with the following example:

Example 1 Imagine you are setting up a cellphone network and need to buy rights to band-

width in all 50 states. However, bandwidth is being sold in packages of different states (e.g.

package 1 includes Alabama, Rhode Island and Wyoming, package 2 includes South Dakota,

Minnesota and Wyoming and so on). Each package has a particular cost. The problem you

face as a cellphone provider is: “What collection of packages should I buy to ensure some

bandwidth in all 50 states at the lowest possible cost?” In other words, what is the minimum

cost way of covering all 50 states?

A formal statement of this class of problems is as follows:15

Definition 2 Let  be a (finite) set , Θ ⊂ 2 be a collection of subsets of  and  : → R

be a cost function which attaches a cost to each element of . A covering of Θ is a subset

 ⊂  such that  ∩  6= ∅ ∀  ∈ Θ. In other words, every set in Θ contains at least

one element of  . A minimum set covering problem (MSCP) is the problem of finding the

minimum cost of covering of Θ, or

min
∈2

X
∈

()

subject to  ∩  6= ∅ ∀  ∈ Θ

15Note that some people call the problem stated in this way as the ‘minimum hitting problem’. However,

Ausiello et al. [1980] show that this is equivalent to other statements of the minimum set covering problem.
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Again, note that the minimum covering set may not be unique.

In the bandwidth example above, we can let  be the set of packages andΘ be a collection

of 50 sets, one for each state, containing the packages which cover each state (e.g. if Alabama

was covered by packages 1, 7 and 9 then 1 = {1 7 9}, if Alaska was covered by packages 3,
14, 19 and 23 then 2 = {3 14 19 23} and so on).  would contain information on the cost
of each package.

2.2 Equivalence of MASP and MSCP

In order to show the equivalence of MASP and MSCP, we need to formalize the concept of

the set of cycles generated by a data set.

Definition 3 A cycle generated by a data set {} consists of a non-repeating sequence
1   in  and a sequence 1   in  such that

1 Â1    Â−1  Â 1

Let  denote the set of all cycles generated by .

We will say that observation  ∈  breaks a cycle  ∈  if  appears in the sequence

1  . Note that if a subset  of  breaks all cycles in , then the complement of that

subset  is acyclic.

Next, we will define the components of a complimentary MSCP for a particular MASP

in the following way.

Definition 4 For the MASP associated with a data set {}, we define the compli-
mentary minimum set covering problem by the following elements ̄, Θ̄ and ̄:

1. ̄ = 

2. ̄() = 1 ∀  ∈ 
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3. Θ̄ =
©
() |  ∈ 

ª
, where () = { ∈  |  breaks }

With this structure, the problem of finding the size of the smallest subset of  which

breaks all cycles in  is the same as finding the cost of the minimum covering of Θ. Further,

a smallest subset of  which breaks all cycles in  is the complement of a largest subset of

 that is acyclic.

Theorem 1 For the MASP associated with a data set {}, if some number  is the
solution to the complimentary MSCP (̄, Θ̄, ̄), then ||−  is the solution to the MASP.

Proof. See appendix 1.1.

Thus any MASP can be solved by solving the equivalent MSCP. While the MSCP is NP-

hard, these problems have been studied exhaustively in the operations research literature

because they can be applied to many real world situations, such as train scheduling and city

planning. As a result, algorithms have been developed to solve or approximate solutions

to MSCP quickly for larger and larger data sets. In appendix 1.3 we describe in detail the

steps required to solve a MASP using this equivalence. We also provide links to software

that automates this process.

3 Economic Applications of the Maximal Acyclical Set

Problem

MASP is of interest because of its relation to the classic assumptions of economic rationality.

Acyclicality is a necessary and sufficient property for a binary relation to have a complete

extension that is a linear order.16 This means that a binary relation that is acyclic can be

thought of as being derived from a complete preference relation.17 Such a binary relation

can be represented (in the case of countable number of objects) by a utility function. MASP

16A linear order is a binary relation that is complete, transitive, antisymmetric and reflexive.
17A relation that is complete, transitive and reflexive.
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therefore identifies the size of the largest subset of a choice data set that is consistent with

utility maximization.

In this section we discuss three economic applications of MASP.

3.1 Measures of Rationality

Acyclicality offers a very stark measure of whether a particular data set is consistent with

rationality: either acyclicality is satisfied or it is not. There is no concept of how ‘close’ a

particular data set is to satisfying this condition. In practice, almost all real life choice data

exhibit some violation of acyclicality, meaning that such a stark measure is not particularly

useful in comparing behavior across individuals or decision making circumstances.18 Instead,

it is useful to have some measure as to whether one data set is closer to rationality than

another under according to some definition. Such a measure could be used, for example,

to test the class of ‘coherent arbitrariness’ models discussed by Ariely et al. [2003] and

Rubinstein and Salant [2008], which propose that choices may appear more rational (or

coherent) for choice problems that are framed the same way, than between choices framed

in different ways.

One such measure of rationality was proposed by Houtman and Maks [1985]: the size of

the largest subset of choice observations that satisfy acyclicality (henceforth the HM index).

Imagine a choice experiment in which subject  exhibits the following behavior:

({ }) = {}
({  }) = {}
({ }) = {}
({ }) = {}

({  }) = {}

If we assume that choice is synonymous with (strict) revealed preference, then these data are

18For example, Choi et al. [2007] report that 83% of subjects violated GARP and Cherchye et al. [2008]

find that 55% of households fail the (unitary) test of GARP.
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not consistent with acyclicality, as  is revealed preferred to , while  is revealed preferred

to , which is in turn revealed preferred to . However, if one were to remove the observation

({ }) = {}, then the resulting system would be consistent with acyclicality.

Now imagine that subject  exhibits the following behavior:

({ }) = {}
({  }) = {}
({ }) = {}
({ }) = {}

({  }) = {}

This data set is also not consistent with acyclicality. However, in this case one would have to

remove two observations before subject ’s choices are consistent with acyclicality. In this

sense, subject  could be described as less rational than subject  . This, in essence, is the

meaning of the HM index: The HM index of subject  is 4, while for subject  it is 3.

While this measure is not without its problems (see section 4 for a discussion), it has the

advantage of being applicable to wide variety of data sets: the HM index can in principle be

applied to choices from any arbitrary choice set. For example, the HM index can be used to

test for consistency in choices from dynamic and discrete environments with foods and colors

(Echenique, Wilson, and Yariv [2009]) or numeric values (Caplin, Dean, and Martin [2010]).

In contrast, the rationality measures of Afriat [1972] and Varian [1991] are only applicable

to data obtained by observing choices derived from different budget sets.

Formally, we define the HM index using the concept of the maximal acyclical set defined

in section 2.1 above.

Definition 5 The HM index for a data set {} is a number  such that  = ||,
where  is a maximal acyclical set of that data set.19

It is obvious from this definition that the problem of calculating the HM index is identical

19The HM index can be normalized by dividing it by the total number of observations in a data set.
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to MASP. This means both that calculating the index is NP-hard and that the algorithm

developed in section 2 can be applied directly to calculating it.

One issue with rationality measures such as the HM index is that it can be hard to inter-

pret what a particular value tells us about the underlying data. For example, consider a data

set in which we observe choices from two disjoint choice sets. In this case the (normalized)

HM index will be 1 for any observed pattern of choice. In other words, such a data set offers

no meaningful test of rationality. One way to address this shortcoming is to compare the

values of our chosen index to the distribution of values we would see under some alternative

‘null hypothesis’ for behavior. Such a comparison allows one to determine whether observed

behavior shows more, less or similar levels of rationality than the null hypothesis.

One popular benchmark is to compare index values to those that one would expect to

see under random choice — in each choice set individuals have an equal chance of choosing

any object in the choice set.20 Although random choice is a relatively weak null hypothesis,

it is applicable to almost any choice setting. The role of random choice in determining the

statistical power of rationality measures is discussed by Bronars [1987] and is applied to

Selten’s measure of predictive success by Beatty and Crawford [2010].21

One advantage of our algorithm is that it makes this type of benchmarking feasible. In

almost all practical cases, benchmarking against random choice has previously proved too

computationally intensive (see Choi et al. [2007]).

Once we have generated a benchmark, the next question is how to compare the experimen-

tal data to this benchmark. For a joint test of all subjects, one can compare the distribution

of the index scores in the data with the distribution of index scores generated under the null

hypothesis using some nonparametric measure of the difference between distributions (such

as the Kolmogorov-Smirnoff test). In the case of a single observation, one can simply read

off the percentile of the simulated data in which that observation falls. Another intuitive

20Or, in the case of budget sets, an equal chance of choosing any object on the budget line.
21Alternatively, we could generate a distribution of possible index values for a given choice environment

using a more plausible error model or decision rule. For example, see Choi et al. [2006] and Andreoni and

Harbaugh [2006].
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measure is to subtract the average simulated score from an actual score — in the style of

Selten’s measure of predictive success [1991]. For the HM index, the resulting number would

represent the fraction of a data set consistent with rationality over and above what could be

explained by random choice. We refer to this measure, which combines elements of predictive

power and statistical power tests, as the ‘Selten-Bronars’ measure.

3.2 Minimal Multiple Rationales

If a data set is cyclical, it cannot be explained perfectly by a single preference order, or

rationale. However, it may be that agents have different rationales for different states. For

example, the relative ranking of an umbrella and a bicycle may differ depending on whether

it is raining or not. If we do not observe these different states, then the resulting choices may

appear irrational. This notion was captured by Kalai, Rubinstein, and Spiegler [2002], who

introduced the concept of rationalization by multiple rationales. A rationale is a preference

ordering, and a data set is rationalized by a collection of rationales if all observations are

explicable as the maximization of one of the rationales. Thus, choice data that can be

rationalized by  rationales can be thought of as being generated by an individual who at

any time is in one of  different ‘states’ and in each state has a different set of preferences.

Such an approach has also been applied to the analysis of household-level data, to determine

if household choices can be rationalized as preference maximization by one of the members

of the household (Deb [2008], Nobibon et al. [2009]) and to determine if households are

heterogeneous (Crawford and Pendakur [2008]).

Formally, we define the concept of rationalizing by multiple rationales as follows:

Definition 6 For a data set {}, a rationalization by multiple rationales is a set of
complete preference relations22  on  such that, for every  ∈ , there exists D∈  such

that D is an extension of ().

In other words, a rationalization by multiple rationales is a collection of preference rela-

22 i.e. complete, transitive and reflexive binary relations.
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tions such that each observation  ∈  can be explained by one of these rationales.

Definition 7 A minimal multiple rationales (MMR) is a rationalization by multiple ratio-

nales such that no smaller collection of rationales could rationalize the data.

Appendix 1.4 provides examples that illustrate the difference between the concept of

MMR and the HM index.

The problem of calculating the MMR for a data set is equivalent to the problem of finding

a partition of the observation set  such that:

1. The observations in each set of the partition are acyclic.

2. Any partition of  that is composed of fewer divisions has at least one division that

is not acyclic.

Solving this problem for incomplete data has been shown to be NP-hard by both Apesteguia

and Ballester [2010] and Deb [2008]. These papers draw on graph theory to suggest methods

for finding or providing approximations to the size of the MMR. Crawford and Pendakur

[2008] present a method for placing a lower and upper bound on the size of the MMR by

iteratively testing randomly generated partitions, and Cherchye et al. [2007] present the

corresponding IP conditions for an analogous problem.

The techniques that we have developed for solving MASP offer a new way of calculating

an upper bound on the size of the minimal MMR. By iteratively applying MASP, we can

find a partition of the observations such that each set in the partition is acyclic. While this

is not guaranteed to be the minimal partition, in practice this technique (a form of ‘greedy’

algorithm) provides a better approximation then the methods of Deb [2008], as we show in

section 5.

A formal description of the algorithm is as follows:

Algorithm 1 The following algorithm calculates an upper bound for the size of the minimal

MMR. Let 1 = , the original set of observations, and let  = 1.
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1. Solve MASP for   and  :  → 2×

2. Select a maximal acyclical set from the above solution, and set  equal to that subset

of 

3. If  =  continue, otherwise set +1 =  and return to step 1

4. Let  = {1  }

The collection of sets  is a partition of  and each  is acyclic. Thus, the cardinality

of  is an upper bound on the size of the minimal MMR.

Clearly, if this algorithm returns a value of 1 or 2, then it has found the size of the

minimum MMR for the data set. Thus, it is sufficient to answer the question of whether

a household of size 2 can rationalize the data (see Nobibon et al. [2009]). However, this

algorithm is not guaranteed to find the exact size of the minimal MMR for more than 2

partitions.

3.3 Estimating Demand Correspondences and Recovering Utility

Functions

To determine the size of the maximal acyclical subsets, our algorithm finds a single maximal

acyclical subset. This subset is a natural choice for conducting welfare analyses that require

acyclicity because it contains the largest possible amount of acyclical revealed preference

information.

For example, the nonparametric method of placing bounds on demand correspondences

developed by Varian [1982] requires acyclic data because observed choices must satisfy GARP

for the correspondence to be well-defined. Because individual consumer choices are often

cyclical, economists have used aggregate data to perform these estimations (Varian [1982]).

Another approach is to generate bundles that are acyclical for a subset of years by estimating

Engel curves for each year (Blundell, Browning and Crawford [2003]). Our algorithm allows
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for a new approach, which is to perform these types of analyses on one or more maximal

acyclical subsets (Martin [2010], Suarez Serrato [2010]).

Importantly, there may be a multiplicity of maximal acyclical sets for a choice data

set. It may be sufficient to present a distribution of analytical results, where each maximal

acyclical set contributes a single data point, but if a unique result is desired, a single result

can be taken from a location in the distribution or generated by a summary statistic over the

distribution. Alternatively, a single maximal acyclical set can be identified with desirable

properties (such as demographic balance) or maximal acyclical sets can be aggregated in

some way. For example, if we take the intersection of all maximal acyclical sets, then we

have an “unambiguous choice relation” in the style of Bernheim and Rangel [2008].

4 A Modification of the HM Index

Apart from computational complexity, the HM index has other weaknesses as a measure of

rationality, as discussed in Choi et al. [2006]. We therefore introduce an alternative measure

which deals with two common criticisms of the HM index.

The first of these problems can be illustrated by the following example. Consider first

choice data from subject , which consists of the following observations:

({ }) = {}
({ }) = {}
({ }) = {}

({   }) = {}

While choice data from subject  has the following observations:

({ }) = {}
({ }) = {}
({ }) = {}

({   }) = {}
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Both subjects have an HM index of 3. However, there is a clear sense in which we might

think of subject  as being ‘less rational’ than . In , the only irrationality is caused by 

being chosen from the set { }, while  is chosen over  from {   } In other words,
there is only one piece of conflicting revealed preference information. However, in  the

problem is caused by  being chosen from {   }, even though it is not chosen when  is
paired individually with   or. Thus we have three pieces of conflicting revealed preference

information: According to the pairwise choices, subject  chose the worst alternative from

{   }. In this sense, the selection of  from {   } is a bigger departure from the

other choices by  than the selection of  from {   } in .

A second problem with the HM index is that it does not contain any notion of the

‘severity’ of a particular violation of acyclicality. This is most obvious in the case in which

the observed choices are over bundles of commodities from different budget sets. Consider the

following choice behavior for hypothetical subjects  and  from budget sets in a commodity

space that contains two goods ( and ):

• Budget set 1 : income is 10, price of good A is 2, price of good B is 2

—  buys 1 unit of good A and 4 units of good B

—  buys 2 units of good A and 3 units of good B

• Budget set 2 : income is 10, price of good A is 3, price of good B is 1

—  buys 3 unit of good A and 1 unit of good B

—  buys 3 unit of good A and 1 units of good B

Figure 1 illustrates the choices of these two subjects.

FIGURE 1 ABOUT HERE

Both of these consumers violate acyclicality, as in both cases the bundle bought in budget

set 2 was available in budget set 1, and vice versa. However, the ‘cost’23 of the acyclicality

23Here cost can be thought of as a potential ‘money pump’ or as ‘wasted’ income.
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violation for subject  was higher than that for subject  . For , the bundle chosen from

budget set 1 was available at a cost of 7 from budget set 2, while for consumer  , the bundle

chosen from set 1 was available at a cost of 9. Thus the ‘cost’ of the acyclicality violation

for  is 3, while for  it is only 1. Yet both subjects would have the same HM index. Cost

measures of this type are the basis of another group of tests of rationality, including those

of Afriat [1972] and Varian [1991].

More generally, a researcher may have some form of external metric on how different

are a pair of objects or how strong is a particular revealed preference relation. A desirable

property in a measure of the rationality of a particular data set is that it can take into

account differences in the ‘strength’ of a particular revealed preference relation — punishing

cycles that involve only ‘strong’ relations more than cycles that involve only ‘weak’ relations.

The HM index has no way of incorporating this information into its measure of irrationality.

In the above example, a natural metric for the strength of preference exhibited when 

is chosen over  could be the cost difference between  and  measured in terms of some

denominator good. In other cases we might have some intuition that two objects are similar

(a weak relation that is easy to break), or that they are very different (a strong relation that

is hard to break).

In order to address these two shortcomings in the HM index we propose a modified

measure. This modified index differs from the standard HM index in two key respects:

1. As the basic unit of analysis, we use each revealed preference relation, rather than each

observed choice.

2. We allow for the varying ‘costs’ of removing different revealed preference relations,

depending on an external metric for the strength of each preference.

To understand the impact of the first change, consider the case of object  being chosen

from a choice set {   }. The HM index treats this as a single observation, and asks

only whether or not this observation needs to be removed in order to guarantee acyclicality.

Our modified index treats this as three separate pieces of information: that  is preferred
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to , that  is preferred to  and that  is preferred to . By doing so, it would treat the

choices of subject  as less rational than those of subject .

The second change allows for the measure to be modified to account for the strength

of the revealed preference relations. Formally, the primitives of our modified index are a

data set {} and a weighting function  : ()→ R. The weighting function carries

information on the strength of different revealed preference relations. Note that we do not

propose any particular metric — the weighting function forms part of the input to the measure.

However, as we discussed above, in the case of choice of budget sets, one natural measure

would be the cost difference between the chosen and unchosen bundle. Such a weighting

function would bridge the gap between rationality measures that only count the number of

violations of rationality (Famulari’s [1995] measure and the HM index) and those that look

only at the cost of such violations (Afriat [1972] and Varian [1991]).24

Given these primitives, the modified HM index we propose is defined as follows:

Definition 8 For a data set {} and a weighting function  : ()→ R, the modi-

fied HM index is defined as

 = min
⊂()

X
∈

 ()

such that () is acyclic.

In other words, the modified HM index is the minimum cost way to create an acyclical

set of preference relations according to the weighting function .

Note that it is only the relationship between MASP and MSCP that makes our modified

index easy to calculate. Because MSCP has a cost function embedded in it, the steps outlined

in section 2 can be extended to this measure, allowing us to use IP solvers to calculate it

as well. Alternative algorithms, such as Houtman [1995] cannot be used to calculate the

modified index because they require that all nodes and edges have the same cost.

24For an example of this implementation, see section 5.2.
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4.0.1 Relation to Apesteguia and Ballester [2010]

In a recent paper, Apesteguia and Ballester [2010] suggest a set of desirable properties for

measures of rationality. Their basic unit of analysis is an index that indicates how close a

particular preference relation is to rationalizing a data set, whereas the HMmeasure indicates

how close any preference relation is to rationalizing a data set. They consider 5 desirable

axioms for such an index to have, and provide a representation theorem for measures that

satisfy these axioms.

The HM index can be altered to consider a single reference preference relation, which

will allow us discuss their axioms in relation to this measure. For a data set {} and
preference relation  on , we can define the following index:

( {}) = | ∈  such that  is an extension of ()|.

( {}) counts the number of observations in  which are consistent with the

preference relation  . We can think of the HM index as maximizing the value of ( {})
across all preference relations on . An equivalent index can be defined for the modified

HM index.

Having transformed the HM index to the framework of Apesteguia and Ballester [2010],

we can ask whether or not ( {}) satisfies their 5 properties. In fact, for both
the HM and modified HM indices, four of the five properties are satisfied: it is invariant

to permutations, it has full value only if  rationalizes all observations, it obeys a version

of independence25 and a version of the Archimedean axiom. However, neither satisfy what

Apesteguia and Ballester [2010] term the Composition condition. This requires that, if for

two sets , ∈ , such that everything in  is preferred to everything in  according to  ,

( {}) has to take the same value for the following two data sets:

1.  is chosen from  and  is chosen from  ∪ {}
25If, for two sets of observations  and 0, the ( ) index is higher for  than for 0 then this is also

true for  ∪00 and 0 ∪00 for any additional observations 00.
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2.  is chosen from  ∪

Our measures could violate this axiom because the HM approach could find two violations

in the first data set and just one in the second data set and the modified HM approach could

find more revealed preference violations in the second data set than the first.

In fact, our algorithm cannot be used to find the preference relation that minimizes

rationality violations for indices of this form. For such indices, the cost of deleting a particular

observation depends on the preference relation being considered. For our algorithm to work,

the cost of deleting a particular observation must be predetermined.

5 Data Analysis

5.1 Measuring the Performance of the MSCP-Based Algorithm

The central claim of our paper is that our algorithm based on MSCP is, in practice, much

better than existing methods of solving MASP. In this section we demonstrate this claim. In

order to do so, we compare our algorithm to two existing methods for solving MASP. Our

two comparators are the methodology applied by Choi et al. [2007] (henceforth CGFK) and

Houtman [1995].26

A priori there is reason to expect our algorithm will outperform our two comparators.

CGFK use an algorithm that examines separately each strongly connected component27 of a

directed graph to find the minimum number of removals for a data set to satisfy acyclicality.

However, after a few initial steps, their algorithm employs brute force to remove observations

one by one, which is typically very computationally expensive in data sets with dense strongly

connected components. Alternately, Houtman [1995] extends the algorithm developed by

Guardabassi [1971], which has the advantage that it does not require cycles to be found in

26We do not compare ourselves to the algorithm developed by Gross and Kaiser [1996], as it only applies

to undirected graphs.
27The largest set of nodes such that every node can be reached by a path of directed edges from every

other node in the set.
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the initial step. While this approach works very well for small data sets, Smith and Walford

[1975] report that Guardabassi’s algorithm is “practical only for small graphs (circuits).”

We use three different environments to benchmark our data. The first is the experimental

data of CGFK. The second is simulated data set based on the characteristics of CGFK, which

we use to ‘destruction test’ the three algorithms. The third is consumer choice data from

the British Family Expenditure Survey, as used in Blundell, Browning and Crawford [2003,

2008].

When comparing the performance of different algorithms, we use a standard set of com-

puting resources. All programs were run on a desktop computer with a 2.8 GHz dual core

processor, 8 GB of RAM and the Windows 7 operating system. The IP solver we use is the

callable C library of GLPK.

5.1.1 Environment 1: The Experimental Data of Choi, Gale, Fisman, and Kariv

[2007]

The first data we use to test our algorithm comes from the experimental data reported

in CGFK. In these experiments, subjects make repeated choices between risky alternatives

using a novel graphical interface. Subjects make choices over bundles of units of asset  and

units of asset , with their choice set described by a randomly generated budget line. The

state of the world is uncertain, and in one state of the world, a unit of asset  pays $0.50 while

asset  pays nothing, and in the other state of the world, the reverse is true. Each subject

makes 50 choices, and CGFK collect data for 93 subjects. The authors selected the number

of choices as the number necessary to provide a reasonably powerful test of rationality.

In order to use the technology we have so far introduced in this paper to examine the

data, we have to identify for each subject the set of choice objects , the set of observations

 and the set of revealed preference relations  :  → 2×. Initially, it seems that

identifying the set of alternatives is problematic, as each budget set contains an infinite

number of alternatives, making the size of set  infinite. However, we can simplify this

problem by noting that the only objects that can be involved in a violation of irrationality
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are those that have at one time been chosen. Thus, without any loss of generality, for any

individual subject we can set  to be equal to the set of bundles that they have chosen from

some budget set, meaning that || ≤ 50. Then  simply contains the 50 choice observations

for that subject, and ( ) = {( ) |  ∈  {}} for ∀ ( ) ∈ .

TABLE 1 ABOUT HERE

CGFK attempt to calculate the HM index for all 93 of their subjects. However, they

report being unable to do so for 6 of their subjects. It is these 6 ‘problem cases’ that

we focus on here. Table 1 reports the time taken to find solve MASP for these subjects.28

Unsurprisingly, the CGFK algorithm struggles — for 4 subjects it fails to solve MASP within

an hour,29 while for the other two subjects it solves the problem within about 120 seconds.

However, both Houtman’s algorithm and our MSCP-based algorithm solve MASP for these

subjects almost instantaneously.

5.1.2 Environment 2: Simulated Choice Data

In order to differentiate between the power of our algorithm and that of Houtman, we use

simulated choice data of increasing size to find the functional limit of each. In order to

do so, we create an increasing number of hypothetical choice sets (budget sets) using the

same method of the CGFK. We then simulate the choices of a ‘random’ subject — one

that chooses a point on each budget constraint at random. Such subjects are likely to

create more irrationality than actual subjects, and therefore provide a harder test for the

algorithms. Additionally, random subjects are of independent interest as the form the basis

of the benchmarking measures discussed in section 3.1.

FIGURE 2 ABOUT HERE

28CGFK also report results for an algorithm that approximates a solution to MASP. However, our results

show that this approximation is a poor one, so we do not report its performance here.
29The algorithm converged in about 2 hrs for one subject, 13 hrs for another subject, and did not converge

within 48 hrs for the remaining two subjects.
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Figure 2 reports how long it takes each algorithm to solve MASP for 100 simulated

subjects with difference choice set sizes. As mentioned above, these 100 simulations could

generate similar algorithm run times as 100 very irrational experimental subjects or as a

small benchmark set. The figure clearly shows the set size at which each algorithm breaks

down. The CFGK algorithm breaks down in data sets of about 30 choices (this explains why

they cannot benchmark their results against random choice for their 50 choice data sets).

Houtman’s algorithm breaks down for data sets that contain about 65 choices (below the size

of other experimental data sets, such as Suarez Serrato [2010]). Our MSCP-based algorithm

begins to break down at choice sets of approximately 350. As the complexity of the problem

roughly increases in a exponential way with the size of the choice set, this demonstrates the

considerable power of the MSCP-based algorithm relative to that of Houtman [1995].

5.1.3 Environment 3: Household Consumption Data

The third data set on which we test our algorithm is the household consumption data set

used in Blundell Browning and Crawford [2008] (henceforth BBC). The authors use 25 years

of data from the (annual) British Family Expenditure Survey30 to gather household level

consumption data, and the annual Retail Price Index to construct price measures. For each

household, consumption is aggregated into three categories: food, other nondurables and

expenses. Prices for each of these categories are then calculated using a retail price index,

which is the same for all households in a given year. Thus, each household is identified by a

6-tuple describing their consumption of the three good types, and a price for each of these

goods.31 Note that if we assume that strict revealed preference only occurs when one bundle

is chosen over another that is strictly cheaper, then acyclicality can only revealed in a data

sets that contain budget lines that cross (i.e. intersect at one and only one point). This

implies that violations of acyclicality require observations from households with different

price vectors, and so different years.

In order to compare the performance of our algorithm to that of Houtman, we take data

30A survey that reports consumption data for repeated cross sections of British households.
31For details of how these data are constructed, see Blundell, Browning and Crawford [2008].
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from 1997-1999, the final three years of the period studied by BBC. For each of these years,

we consider households in the 50th-75th percentile in terms of income, giving a total of 1090

observed choices. We focus on households from the same income quartile because they are

more likely to have budget lines that cross, increasing the probability of a meaningful test of

acyclicality. From these 1090 observed choices, we draw subsets of increasing size, on which

we test the ability of our algorithm and Houtman’s algorithm to solve MASP. The results

are shown in figure 3.

FIGURE 3 ABOUT HERE

Houtman’s algorithm breaks down in choice sets of size of 210 or more. In contrast,

our MSCP-based algorithm can solve MASP for the entire data set (1090 observations) in

roughly 5 seconds. In fact, our algorithm can solve MASP for all observations from the

years 1997-1999, for a total of 4,354 observations. In this setting, our algorithm can handle

a data set over 20 times larger than the next best algorithm. This differs from the result in

environment 2 because the structure of the resulting graph is quite different.

While our computer program fails when a fourth year of data is added, it is not due to

the speed of our algorithm. For 1996-1999, the size of the preference graph that the data

generates exceeds the available memory in 32 bit computers because although the number

of observations is just 5,830, the number of revealed preference relations is 16,990,374.

5.1.4 Calculating Minimal Multiple Rationales

The final way in which we test our algorithm is to examine its ability to approximate the

MMR. Here we are interested not in the speed of the algorithm (the computational limits

will be similar to its ability to solve MASP), but instead its accuracy. As we discuss in

section 3.2, we can use our MASP solver to provide an upper bound to the size of the MMR.

We compare this upper bound to that provided by the algorithm proposed by Deb [2008].32

32We are aware of another approximation technique developed by Crawford and Pendakur [2008]. As yet

we have not compared our performance to that of their algorithm.
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In both experimental and household consumption data we find our algorithm to provide

a tighter upper bound than the algorithm of Deb. In the CGFK data, our approach is

strictly better than Deb’s in 11 of 93 subjects, and is never strictly worse. In the case of the

BBC data, we approximate the MMR for 25 sets of 1,000 observations taken randomly from

1990-1999, and our approach is strictly better than Deb’s for 20 sets, and again, is never

strictly worse.33

5.2 Measuring Rationality

In this section we discuss briefly what the various analyses described in section 3 have to say

about our two data sets: the experimental data of CGFK and the household consumption

data of BBC. Previously it has not been possible to perform these analyses, so it is interesting

to know what these tests actually have to say. We begin by reporting the HM index for each

of the data sets and benchmarking these against random choice in the manner of Bronars

[1987] and Selten [1991]. Next, we implement our modified version of the HM measure, and

discuss how it compares to the standard measure. Finally, we describe our estimates for the

MMR.

5.2.1 The HM Index

Figure 4 shows the distribution of the HM index in the 93 subjects in the CGFK data,

compared to the distribution generated from 93,000 simulated subjects. For each subject,

we simulated 1,000 random choices from the exact budget sets that the subject faced, and

then we pooled these simulations.

FIGURE 4 ABOUT HERE

The data from the actual subjects is clearly significantly ‘more rational’ than that of the

simulated subjects. Of the actual subjects, 14 required no removals, and the modal size of

33Our approximation is only one rationale tighter in all cases, but the approximate number of rationales

needed to rationalize both sets is relatively small.
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the maximal acyclical set (MAS) was 47. In contrast, in the simulated data, there are no

observations that require no removals, and the modal size of the MAS was 34. The difference

between the two sets is confirmed by a Kolmogorov-Smirnoff test (  0001).

Despite the fact that the population of subjects is clearly different from random choosers,

there are outliers who score poorly on the HM index. The Selten-Bronars measure can help

us to identify which subjects did poorly given the budget sets they faced. On the extreme, if

budget sets never intersect, then random choice will generate an HM index of 1, so a subject

facing the same budget lines will always have a Selten-Bronars score of 0. On the other

hand, if budget lines intersect a lot and so random data produces an average HM index of

0.25, then a seemly low HM index of 0.75 could actually produce a high Selten-Bronars score

of 0.50 (see section 3.1 for more details)

For this data, the mode Selten-Bronars score was 0.255, which indicates that over 25

percent more of the data set is acyclical than with random choice. Clearly, the modal

subject was much closer to rationality than random choice. At the 5th percentile, the score

was still 0.1313, but four subjects had Selten-Bronars scores below 0.1 — the minimum was

just 0.01802, which means it is almost indistinguishable from random choice.

Tables 2 and 3 show HM indices and associated Selten-Bronars measures (based on 100

simulations) for the household consumption data of BBC for the years 1997 to 1999. Table 2

breaks down the aggregate data by income percentile. Table 3 breaks it down by geographic

grouping.

TABLE 2 ABOUT HERE

TABLE3 ABOUT HERE

As table 2 shows, the average HM index across the four quartiles is very close to the

overall HM index for all 4,354 subjects pooled together. This indicates that there are few

cycles that overlap the different income quartiles, which makes sense given that budget lines

are less likely to cross at very different income levels. This result implies that we could
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separately determine the HM index for each income quartile if a data set proved too large

for our algorithm to process or solve. On the other hand, table 3 shows that the average

HM index across all regions is much higher than the overall HM index, which indicates that

inconsistencies are generated when pooling data across regions. One way to interpret this

result is that preferences show more differences across than within regions.

The Selten-Bronars measure provides contrast to the absolute HM index scores. In

general, the Selten-Bronars scores indicate that only about 4-6 percent more of the actual

data is acyclical than random choice data. Notably, the income groups that appear the most

consistent by their HM index alone are the least consistent when we consider how far they

are from random choice. The differences are even more varied among regions. For the two

regions with the highest HM index scores (0.92), one (Wales) has one of the highest Selten-

Bronars scores (0.06), while the other (Southwest) has a one of the lowest (0.03). Meanwhile,

the Southeast region, which includes London, has a very low consistency score by the HM

index alone (0.81), but one of the highest Selten-Bronars scores (0.06). This indicates that

even though there were more cycles in household purchases in London, there were a lot more

crossing budget constraints as well.

5.2.2 The Modified HM Index

In section 4 we proposed a modification of the HM index. This modification allowed for the

removal of some preference relations to be more ‘costly’ than others, based on a weighting

function that indicated the strength of that relation. Here we calculate this modified index

for the CFGK data based on a particular weighting function. The weighting function we

use is in the spirit of the rationality measures developed by Afriat [1972] and Varian [1991].

The strength of a preference relation is based on the cost difference between the chosen and

not chosen object. For example, if bundle  is chosen when  is available for $2 less, we give

this revealed preference relation a higher weight than if  was available for $1 less.

Formally, let  ∈  be the observation that bundle  was chosen from budget set with
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price vector , when bundle  was available for a lower total cost. Then

(()) =



.

As a result, this modified HM index is the smallest possible total efficiency loss from cycles

present in the data. Unlike the other efficiency measures, we treat each of the violations that

an observation generates as separate efficiency losses.

Figure 5 shows the distribution of our modified index for the 93 subjects in the CGFK

data, compared to the distribution generated from 93,000 simulated random subjects.

FIGURE 5 ABOUT HERE

Once again, the data from the actual subjects is clearly significantly ‘more rational’ than

that of the simulated subjects. A Kolmogorov-Smirnoff test (  0001) confirms that the

distributions are quite different.

TABLE 4 ABOUT HERE

A natural question is how this modified measure compares to existing measures of ra-

tionality. Table 4 reports the Spearman Rank Correlation for four measures of rationality,

calculated on the subjects in CFGK. These 4 measures are the standard HM index, our mod-

ified HM index, the Varian measure34 and the Afriat measure.35 Overall, the correlations

are quite high — above 0.75 for all measures. Additionally it seems our modified measure is

‘inbetween’ the purely counting based measure of the HM index and the purely cost based

measures of Afriat and Varian, as it has a closer correlation to each type than the other type

does.

FIGURE 6 ABOUT HERE

34The maximum of the minimum reduction of each budget constraint needed to remove all cycles generated

by the corresponding choice.
35The minimum reduction of every budget constraint in order to remove all cycles.
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What types of subjects appear rational according to the standard HM index but not

the modified one, and vice versa? Subject 512 is ranked as the 82nd least rational subject

under the HM index but only the 43rd least rational under the modified index. In contrast,

subject 603 is only the 40th least rational subject under the HM index but the 91st least

rational subject under the modified index. As shown in figure 6, this is due to the fact that

violations for subject 512 were very slight, while the violations for subject 603 involve large

efficiency losses. Some of these losses stem from subject 603 selecting at the ends of the

budget constraint.

5.2.3 Minimal Multiple Rationales

Figure 7 shows our estimated MMRs for the CFGK data, benchmarked against random

choices

FIGURE 7 ABOUT HERE

Again, it is clear that the behavior of the CFGK subjects is a long way from their random

counterparts (Kolmogorov-Smirnoff   0001). Interestingly, the number of rationales

needed to explain the CFGK data is low — no subject requires more than 3 rationales. Even

in the simulated data with random choices, no subject requires more than 6 rationales. For

the BBC data, when we look at 25 sets of 1,000 observations taken randomly from 1990-1999,

the number of rationales needed is between 4 and 5 (out of a maximum of 10).

6 Conclusion

In this paper we have introduced a new method for finding the size of the maximal acyclical

subset of a set of choice data. This method is orders of magnitude more powerful than

existing methods, and opens up important new areas of analyses that can be applied to

choice data, both from experiments and from household expenditure surveys.
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One critique of the rationality measures which we report is that they are somewhat ad hoc,

and do not admit the possibility of formal statistical tests. To some extent we sympathize

with this claim. While we believe that these measures offer intuitive criteria for whether a

particular data set is ‘close to’ satisfying rationality (particularly when augmented by tools

such as the Selten-Bronars measure), it is clear that a formal testing procedure would be a

significant improvement. We see the development of such a test as important future work,

and hope that the increased analytical power provided by our algorithm will aid such an

effort.
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Figure 1: Hypothetical Choices of Subjects H and J 
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Figure 2: Run Times for 100 Simulated Subjects 

 
Figure 3: Run Times for Consumer Expenditure Data 

 



 
Figure 4: HM Index Scores for Actual Subjects (from CFGK) and 93,000 Simulations 
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Figure 5: Modified HM Index Scores for Actual Subjects (from CFGK) and 93,000 
Simulations 
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Figure 6: Five Choices for Subjects 512 and 603 
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Figure 7: Minimal Multiple Rationales Estimates for Actual Subjects (from CFGK) and 
93,000 Simulations 
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Tables 
 

Table 1 

Subject  CFGK  Houtman  MSCP 

211  > 1 hour  < 1 sec  < 0.1 sec 

324  120 sec  < 1 sec  < 0.1 sec 

325  > 1 hour  < 1 sec  < 0.1 sec 

406  > 1 hour  < 1 sec  < 0.1 sec 

504  90 sec  < 1 sec  < 0.1 sec 

608  > 1 hour  < 1 sec  < 0.1 sec 

 
Run time for each algorithm for the 6 ‘problem subjects’ from CFGK 

 
Table 2 

Income Percentile  Obs  Removals  HM Index  Selten‐Bronars 

1‐25  1089 243  0.78  0.04 

26‐50  1089 284  0.74  0.06 

51‐75  1090 286  0.74  0.06 

76‐100  1089 240  0.78  0.05 

Overall  4354 1150  0.74  0.05 

Average        0.75  0.05 

 
Rationality measures for household consumption data from BBC for years 1997-1999, 

broken down by income percentile 
 



 
Table 3 

Geographical Grouping  Obs  Removals
HM 
Index  Selten‐Bronars 

East Anglia  169  16  0.91  0.04 

East Midlands  309  35  0.89  0.03 

London  373  46  0.88  0.06 

North Ireland  297  29  0.90  0.04 

North  197  19  0.90  0.02 

North West  436  62  0.86  0.04 

Scotland  324  34  0.90  0.05 

South East  856  161  0.81  0.06 

South West  418  34  0.92  0.03 

Wales  224  19  0.92  0.06 

West Midlands  380  42  0.89  0.02 

Yorkshire  367  38  0.90  0.04 

Overall  4354 1150  0.74  0.05 

Average        0.89  0.04 

 
Rationality measures for household consumption data from BBC for years 1997-1999, 

broken down by geographic region 
 
 

Table 4 

Measure  HM Modified HM  Varian  Afriat 

HM  1  0.82  0.75  0.78 

Modified HM    1  0.95  0.95 

Varian      1  0.91 

Afriat           1 

 
Spearman Rank Correlation between rationality measures for CFGK data 

 


