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1 Algorithm for Solving the MASP

In this online appendix we formally de�ne the maximal acyclical set problem (MASP) and

describe our algorithm for solving the problem. A MASP can be solved by identifying and

solving a related minimum set covering problem (MSCP) � a class of problems which is

well studied within the �eld of operations research. This is both good news and bad news

for solving incidences of MASP. The bad news is that MSCP (and so MASP) are NP-hard.

The implication is that there is no known method that can guarantee solution times will

increase only as a polynomial function of the number of inputs to MASP. In other words,

one cannot guarantee that solution times will not get very large, very quickly as the size

of the input data grows. However, the good news is that researchers in operations research

have developed a number of tools that in practice solve MSCP quickly and exactly for many

data sets. The equivalence between MSCP and MASP means that these techniques can be

adopted wholesale for solving MASP.

Solving MASP is equivalent to calculating the Houtman-Max Index (HMI). To adjust

the algorithm to calculate Minimum Cost Index (MCI), all that is required is to (1) remove

relations rather than observations, (2) minimize cost instead of size, and (3) divide the

solution by total expenditure.

1.1 De�nitions

MASP is the problem of �nding the size of the largest subset of a set of choice data that

generates acyclical revealed preference relations. The primitives of the problem are a grand

set of alternatives Z, a set of observations X and a relation function D : X ! 2Z�Z that

characterizes a set of binary relations on Z generated by each observation in X. We call the

triple fZ;X;Dg a data set.1

1We assume that X is �nite. In this case, we can solve MASP whatever the cardinality of Z. Moreover,

acyclicality is enough to guarantee that choices can be rationalized by utility maximization even if Z is

uncountable. This is because we can concentrate on the (�nite) set of objects Z that are chosen in any

observation X. If the data is acyclic, we can generate a utility function u : Z ! R that rationalizes choice
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As an example, consider the case of a laboratory experiment in which we observe a subject

making choices from subsets of Z. Furthermore, assume that we are prepared to say that

the chosen object in any set is strictly preferred to all the other available alternatives.2 In

this case we could think of each observation in X as consisting of a tuple (z; A) with z 2 A

and A 2 2Z=;., implying that alternative z has been observed as being chosen from the

set of alternatives A. The function D : X ! 2Z�Z would then be de�ned as the revealed

preference relations generated by X:

8 (z; A) 2 X;

D(z; A) = f(z; y) j y 2 A= fzgg

We denote by the binary relation �x� Z �Z the relations generated by the observation

x 2 X, so that �x= D (x). For any B � X, we de�ne the binary relation �B on Z as

z �B w if, for some x 2 B, z �x w:

For an arbitrary binary relation �, a cycle refers to a set of alternatives z1; z2; :::; zn 2 Z

such that z1 � z2 � :::: � zn � z1. We say that a set of observations B � X is acyclic

if the binary relation �B generated by B contains no cycles. Thus, we de�ne MASP as

the problem of �nding the size of the largest subset B � X such that the resulting binary

relation �B is acyclic.

De�nition 1 The maximal acyclical set problem (MASP) for a data set fZ;X;Dg is the

problem of �nding the size of a set B � X such that

(i) B is acyclic

(ii) if B0 � X and jB0j > jBj , then B0 is not acyclic

between these objects. All remaining alternatives can be assumed to have a utility equal to minz2Z u(z)� 1.
2Note that this assumption is not central to our methodology, which is �exible enough to cope with

almost any de�nition of revealed preference. For example, if we are observing choices from budget sets, we

could say that x is revealed preferred to y only if x was chosen when y was available at strictly lower cost.

The precise assumption is de�ned by the nature of the mapping D.
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In other words, MASP is the problem of �nding the size of the largest acyclical subsets

of X. Note that the maximal acyclical set may not be unique.

Next, we de�ne a MSCP. In order to explain the idea behind this class of problems, we

illustrate it with the following example:

Example 1 Imagine you are setting up a cellphone network and need to buy rights to band-

width in all 50 states. However, bandwidth is being sold in packages of di¤erent states (e.g.

package 1 includes Alabama, Rhode Island and Wyoming, package 2 includes South Dakota,

Minnesota and Wyoming and so on). Each package has a particular cost. The problem you

face as a cellphone provider is: �What collection of packages should I buy to ensure some

bandwidth in all 50 states at the lowest possible cost?�In other words, what is the minimum

cost way of covering all 50 states?

A formal statement of this class of problems is as follows:3

De�nition 2 Let S be a (�nite) set , � � 2S be a collection of subsets of S and k : S! R

be a cost function which attaches a cost to each element of S. A covering of � is a subset

T � S such that � \ T 6= ? 8 � 2 �. In other words, every set in � contains at least

one element of T . A minimum set covering problem (MSCP) is the problem of �nding the

minimum cost of covering of �, or

min
T22S

X
s2T

k(s)

subject to � \ T 6= ? 8 � 2 �

Again, note that the minimum covering set may not be unique.

In the bandwidth example above, we can let S be the set of packages and � be a collection

of 50 sets, one for each state, containing the packages which cover each state (e.g. if Alabama

was covered by packages 1, 7 and 9 then �1 = f1; 7; 9g, if Alaska was covered by packages 3,
3Note that some people call the problem stated in this way as the �minimum hitting problem�. However,

Ausiello et al. [1980] show that this is equivalent to other statements of the minimum set covering problem.
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14, 19 and 23 then �2 = f3; 14; 19; 23g and so on). k would contain information on the cost

of each package.

1.2 Equivalence of MASP and MSCP

In order to show the equivalence of MASP and MSCP, we need to formalize the concept of

the set of cycles generated by a data set.

De�nition 3 A cycle generated by a data set fX;Z;Dg consists of a non-repeating sequence

z1; :::; zn in Z and a sequence x1; :::; xn in X such that

z1 �x1 : : : �xn�1 zn �xn z1

Let C denote the set of all cycles generated by X.

We will say that observation x 2 X breaks a cycle c 2 C if x appears in the sequence

x1; :::; xn. Note that if a subset B of X breaks all cycles in C, then the complement of that

subset X=B is acyclic.

Next, we will de�ne the components of a complimentary MSCP for a particular MASP

in the following way.

De�nition 4 For the MASP associated with a data set fX;Z;Dg, we de�ne the compli-

mentary minimum set covering problem by the following elements �S, �� and �k:

1. �S = X

2. �k(x) = 1 8 x 2 S

3. �� =
�
�(c) j c 2 C

	
, where �(c) = fx 2 X j x breaks cg

With this structure, the problem of �nding the size of the smallest subset of X which

breaks all cycles in C is the same as �nding the cost of the minimum covering of �. Further,

a smallest subset of X which breaks all cycles in C is the complement of a largest subset of

X that is acyclic.
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Theorem 1 For the MASP associated with a data set fX;Z;Dg, if some number s is the

solution to the complimentary MSCP ( �S, ��, �k), then jXj � s is the solution to the MASP.

Proof. See Appendix 3.

Thus any MASP can be solved by solving the equivalent MSCP. While the MSCP is NP-

hard, these problems have been studied exhaustively in the operations research literature

because they can be applied to many real world situations, such as train scheduling and city

planning. As a result, algorithms have been developed to solve or approximate solutions to

MSCP quickly for larger and larger data sets.

1.3 A Description of the Algorithm

Using the result of Theorem 1 to solve MASP associated with a data set fX;Z;Dg requires

two algorithmic components. First, in order to construct the set ��, we need an algorithm

that identi�es the set of all cycles C generated by MASP, as well as the observations x 2 X

that break each cycle c 2 C. Second, we need an algorithm to solve the complimentary

MSCP. Here we describe brie�y how we implement each of these stages.

In order to �nd the set of cycles of C, we use a modi�cation of Johnson�s algorithm

(Johnson [1975]) �a computationally e¢ cient graph theoretic algorithm. Johnson�s algo-

rithm is based on �depth-�rst�search, a standard approach to �nding cycles, which looks at

the objects preferred to an initial object, then looks for the objects that are preferred to the

�rst of those preferred objects and so on until a cycle is found or the process terminates. At

that point, the algorithm goes back one level and proceeds from the second preferred object

until all possibilities are exhausted. To gain e¢ ciency, Johnson adds a blocking function to

prevent redundant searching on the tree, which gives it a computation time upper bound

of O ((n+ e) (c+ 1)), where n is the number of nodes (in this case jZj), e is the number of

edges (jD(X)j) and c is the number of cycles (jCj).

In order to increase e¢ ciency, we �rst apply the elementary rules of Guardabassi [1971]

to absorb dominated nodes and remove singular edges, which are inconsequential for �nding
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a solution to MASP. Note that this technique cannot be employed when calculating the

Minimum Cost Index (MCI).

Next, we need a method for solving the companion MSCP, which is NP-hard. These

problems have been studied exhaustively in the operations research literature because they

can be applied to many real world situations, such as train scheduling and city planning. As

a result, algorithms have been developed to solve or approximate solutions to MSCP quickly

for larger and larger data sets.

The most widely used solution methods for MSCP are a class of branch and bound

algorithms that �nd an exact solution by iteratively �relaxing� the corresponding binary

integer programming problem so that linear programming techniques can be used to create

bounds on the problem. When MSCP is written as a binary integer programming problem,

each cover is given a value of 0 or 1, where 1 signi�es that a cover is included in the minimum

cover. With this speci�cation, MSCP can be written in the form:

min
x2f0;1gn

f 0 � x subject to Ax � b

where n is the number of covers, x is a vector of cover values, f is a vector that includes the

cost of each cover, b is a vector of 1�s and aij = 1 if cover j covers node i. This problem is

relaxed by allowing the value assigned to each cover to be any real number between 0 and

1, which gives a lower bound to the solution of the binary integer problem. Now imagine

the binary integer problem as a tree, where each fork is a decision whether or not to include

a single cover in the minimum cover. The bound given by the relaxed problem allows the

algorithm to remove many branches of the tree from consideration.

These algorithms have been integrated into standard Integer Programming (IP) software

packages. Many programming languages include optimization functions that use an internal

IP solver (including Matlab). There are also a variety of specialist solvers available on a

commercial (e.g. CPLEX) and noncommercial (e.g. SCIP and MINTO) basis. For our

analysis, we use the GLPK callable C library (www.gnu.org/software/glpk/), which acts as

an internal solver for our C++ program. By using an internal solver, we can easily pass data

from Johnson�s algorithm to the IP solver.
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2 MASP and NP Completeness

One advantage of connecting MASP with an associated MSCP is that it allows us to relate

MASP to the concept of NP-completeness. Introduced by Cook [1971], NP-completeness is

a property of decision problems. The set of NP-complete problems is a subset of the class of

problems that are NP (which stands for Nondeterministic Polynomial time). A problem is

NP if its solution can be veri�ed in polynomial time4; though importantly, a solution cannot

necessarily be found in polynomial time. A decision problemM is described as NP-complete

if it satis�es two properties:

1. M is NP

2. Every problem in NP is reducible5 to M

A problem is called NP-hard if it satis�es condition 2, whether or not it satis�es condition

1.

The class of NP-complete problems is interesting because, if any such problem can be

solved in polynomial time (denoted as the class P of decision problems), then any problem

in NP can be solved in polynomial time. In other words, this would imply that any problem

whose solution can be veri�ed in polynomial time can also be solved in polynomial time.

Whether or not this is true is one of the big open problems in mathematics.6 Thus, the

quest to �nd an algorithm that will solve an NP-complete problem in polynomial time is

taking on one of the more di¢ cult problems of mathematics.

MSCP as we have described it above is NP-hard rather than NP-complete, because a

solution cannot be veri�ed in polynomial time. The decision version of MSCP, which asks

whether there is a cover of � with total cost less than some value V , is NP-complete (Karp

4The run time of the veri�er is no greater than a polynomial of the problem size.
5Meaning there is a (polynomial time) transformation of any problem in NP to M . Thus, M can be used

once as a subroutine to solve any problem in NP.
6The Clay Mathematics Institute is o¤ering a prize of $1 million for anyone who can prove either P=NP

or P 6=NP.
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[1972]). However, the property of NP-hardness alone means that �nding a polynomial time

solution algorithm for the optimization version of MSCP would be enough to show that all

NP-complete problems could be solved in polynomial time, making such a algorithm beyond

the current state of mathematical knowledge.

Does this mean that there is no known way of solving MASP in polynomial time? To

prove this, we have to show that MASP is NP-hard. The standard way of doing this is to

show that a known NP-complete problem is reducible to MASP, which implies that all NP

problems are reducible to MASP. We show this to be the case by showing that the decision

version of MSCP is reducible to MASP. This implies that the search for an algorithm that

is guaranteed to solve MASP in polynomial time is essentially futile.
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3 Proofs

Theorem: For the MASP associated with a data set fX;Z;Dg, if some number s is the

solution to the complimentary MSCP ( �S, ��, �k), then jXj � s is the solution to the MASP.

Proof. Let T be a minimum cost covering of �S. In order to prove the result, we need to

show two things about the set A = X=T : First, that A itself is acyclic. Second, that any set

A0 � X such that jA0j > jAj contains a cycle. We prove both of these claims by contradiction.

1. Assume A is not acyclic. Then, there exists some cycle z1 �A ::: �A zn �A z1. But

this implies there exists some cycle c 2 C such that �(c) � A, contradicting the claim

that T \ � 6= ? for all �.

2. Let A0 be an acyclic set such that jA0j > jAj, and consider the set T 0 = X=A0. It must

be true that T
0 \� 6= ? 8 � 2 ��. If not, then there exists some � 2 �� such that � � A0.

This in turn implies that

9 z1 �x1 : : : �xn�1 zn �xn z1

) z1 �A
0
::: �A0 zn �A

0
z1

and so A0 would not be acyclic. But, as jA0j > jAj, then jT j > jT 0j, in turn implying

that X
s2T

k(s) = jT j > jT 0j =
X
s2T 0

k(s)

which contradicts the fact that T is a minimum cost covering of �S.

Theorem: MASP is NP-hard.

Proof. To show that MASP is NP-hard, we need to show that a known NP-complete

problem can be reduced to MASP. We will use the decision version of MSCP, which was

shown to be NP-complete by Garey and Johnson [1979]: Given a (�nite) set S, a collection

of subsets � � 2S, and an integer k does there exist a covering T of � of size k or less?
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Let X = S and Z = S, and apply an arbitrary index I to the elements of S. Next, de�ne

a function

c (�) = f(si; sj) j si; sj 2 � and i < j and @k s.t. i < k < jg

[ f(sj; si) j si; sj 2 � and @k s.t. k < i and j > kg :

This creates a �cycle�from each cover that begins with the lowest indexed object, moves

to the highest indexed object, and ends with the lowest indexed object again. For example,

c (fs2; s3; s5g) = f(s2; s3) ; (s3; s5) ; (s5; s2)g :

Finally, let R = [�2�c (�) and

D (si) = fr 2 R j r1 = sig :

Clearly, this simple structure fX;Z;Dg can be added in polynomial time. Further, this

structure can be used to formulate a MASP, which returnsM , the size of a maximal acyclical

set A.

We claim that jXj � jAj � jT j if and only if there exists a covering of � of size k or less.

First, assume that jXj � jAj � jT j and that there does not exist a covering of � of size k

or less. Let T � = X=A. It must be that T � covers all � 2 � because T � breaks the cycles in

D by including a member of each cycle, and thus, it contains a member of each � 2 �. But

then T � is a covering of size k or less, contradicting the latter assumption.

Second, assume that there exists a covering of � of size k or less and that jXj�jAj > jT j.

Let A� = X=T . It must be that A� is acyclic because T contains an element from every cycle

created by the c function. But then by the second assumption

jXj � jAj > jXj � jA�j

jAj < jA�j

which contradicts that A is a maximal acyclical set.
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