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Abstract

Because of cognitive constraints, individuals may not perfectly perceive a mecha-
nism’s payoff structure, and thus may not realize that the mechanism they face has
a dominant strategy. We study the link between misperception of mechanisms and
the use of dominant strategies by applying standard techniques from the literatures
on imperfect perception, rational attention, and contingent thinking to a widely-used
single agent mechanism. For this mechanism, we provide a novel Bayesian model of
limited game form recognition and contingent thinking, and by taking this model to
experimental data, we find that misperception of this mechanism appears to respond
in line with the incentives to perceive the mechanism better.

JEL Codes: I30, C91, D12
Keywords: Imperfect perception, rational inattention, contingent thinking, ex-
periments

∗We thank Ignacio Esponda, Antonio Rangel, and Emanuel Vespa for excellent suggestions about ex-
perimental design, Kellogg Research Support (particularly Mac Abruzzo and Kat Baker) for valuable as-
sistance with our experiments, and Andrew Caplin, Tim Cason, Mark Dean, P.J. Healy, Philippe Jehiel,
Peter Klibanoff, Shengwu Li, Sanket Patil, Nicola Persico, Charlie Plott, and Alvaro Sandroni for insightful
feedback.
†Kellogg School of Management, Northwestern University, 2211 Campus Drive, Evanston, IL 60208, d-

martin@kellogg.northwestern.edu.
‡Kellogg School of Management, Northwestern University, 2211 Campus Drive, Evanston, IL 60208,

edwin.munoz@kellogg.northwestern.edu.

1

mailto:d-martin@kellogg.northwestern.edu
mailto:d-martin@kellogg.northwestern.edu
mailto:edwin.munoz@kellogg.northwestern.edu


Strategic dominance is a widespread concept in the theory of incentives and its applica-
tions. Incentivized single-agent tasks such as proper scoring rules and the Becker-DeGroot-
Marschak (BDM) mechanism –broadly used to elicit beliefs and preferences– hinge on having
a dominant strategy. In the theory of mechanism design, implementation in dominant strate-
gies plays a major role, in part because “we can feel fairly confident that a rational agent who
has a dominant strategy will indeed play it” (Mas-Colell, Whinston, Green, et al. 1995).1 In
applications, dominant strategy incentive compatible mechanisms are viewed as providing a
safe environment for participants to reveal their information (Niederle, Roth, and Sönmez
2008), a level playing field when participants are heterogeneous in their level of sophistication
(Pathak and Sönmez 2008), and a simplified choice problem that spares “participants the
need for elaborate strategic calculations” (Milgrom 2004).

However, recognizing that one strategy dominates all others requires understanding the
payoffs to all actions in all contingencies. When a payoff rule is complicated, so that agents
must determine the consequences for multiple contingencies based on the payoff rule and/or
jointly consider numerous contingencies and actions, it may be unrealistic to assume that
they have a complete or correct mental representation of the mechanism’s extensive form
when choosing their strategy, so they may not realize there is a dominant course of action.

In line with this, there is increasing evidence from the lab and the field that individuals
can have trouble identifying the dominant strategies of mechanisms. For example, Hassidim,
Marciano, Romm, and Shorrer (2017) indicate that one barrier to truthful revelation is that
agents may fail to identify which strategies are dominant, and point to evidence that relates
“low cognitive abilities with higher rates of misrepresentation”.2 Relatedly, Rees-Jones and
Skowronek (2018) conduct a large-scale experiment with a group of medical students in a
version of the algorithm used by the National Residency Match Program, and find evidence
that many students do not realize telling the truth about their preferences is optimal.

Experimental evidence of a link between perception of a mechanism’s payoffs and truthful
revelation of preferences is provided by Cason and Plott (2014) (CP hereafter). They show
that subjects can misperceive the incentives of a widely-used single agent mechanism, the
BDM mechanism. This mechanism is designed so that valuations of goods and services are
elicited in a truthful way.3 CP implement this mechanism experimentally and find that
subjects do not act in line with the dominant strategy of the mechanism and that they
misperceive the payoff rule. Because of this, CP conclude that the choices of subjects do not

1In addition, dominant strategy implementation of social choice functions is “robust to changes in agents’
beliefs and does not rely on the assumptions of a common prior and equilibrium play” (Gershkov, Goeree,
Kushnir, Moldovanu, and Shi 2013).

2The other barriers they identify are mistrust of the market maker (e.g., players doubt the recommenda-
tion to play a dominant strategy), self-selection into the mechanism, and non-standard utility functions.

3See section 3.1 for a description of the BDM mechanism.
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reveal their true preferences.

In this paper, we use a novel model and a new experimental protocol to show that
misperception of this mechanism appears to respond systematically to the costs and benefits
of perceiving the mechanism better. While our results pertain just to the BDM mechanism,
it is our hope is that these results can offer guidance to market designers and policymakers
about how to respond to misperception of mechanisms more generally. One trivial takeaway
from our results is that higher incentives are likely to decrease misperception. However,
this does not imply that high incentives are sufficient to eliminate misperception entirely.
Completely eliminating misperception may be unattainable for mechanisms in which the
payoff rule is inherently complex. In this regard, the BDM mechanism is ideally suited for
studying misperception of mechanisms because while it has a dominant strategy, its payoff
rule involves a number of different contingencies for each action, which creates an opening
for misperception to have a sizable impact on behavior.

The fact that agents appear to weigh the costs and benefits of perceiving the mecha-
nism accurately also means that it is important which mechanism or mechanisms that the
mechanism in question can be confused with. If a certain alternative mechanism has a very
distorting effect on behavior, market designers may want to emphasize that agents are not
facing that particular extensive form. However, this does not mean that more information
about the mechanism is necessarily better. Our results also suggests that how hard or costly
it is for the agent to understand the payoff rule is also an important consideration.

In addition, our finding that agents behave in line with the costs and benefits of perceiv-
ing the mechanism better preserves, at least in one setting, ex-ante rationality in the face of
seemly dominated actions. Further, these actions can be explained without the need to im-
pose non-rational assumptions that may not be falsifiable. However, because there are many
other potential explanations for mistakes in BDM experiments besides misperception,4 we
run a variant on the CP experiment where payoffs are described contingency-by-contingency.
Because we do not change the extensive form of the BDM as we vary the protocol, most
alternative explanations for choice mistakes in the BDM do not provide an answer for why
our new protocol substantially reduces mistakes. So while other behavioral biases may still
impact behavior with our new protocol, our experimental variation helps to identify a portion
of mistakes that have fewer alternative explanations besides misperception.

Having identified a portion of mistakes that appear to be driven by misperception, we try
to identify whether misperception responds systematically to variation in the mechanism.
Existing models of mechanism misperception cannot answer this question because they do
not leave room for uncertainty or learning. For example, CP provide a non-Bayesian model

4For example, the endowment effect, positive feelings from ownership, anchoring or attraction to the
maximum possible payoff, bad deal aversion, and the buy-low sell-high heuristic
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of game form recognition in which agents are certain (correctly or incorrectly) of the game
form they face, and Li (2017) proposes a model of misperceiving a mechanism’s game form
based on a complete failure of contingent thinking.

Instead, we introduce a Bayesian model of limited game form recognition and contin-
gent thinking that explicitly allows for uncertainty and learning. We model misperception
of the BDM mechanism using standard techniques from the psychology, neuroscience, and
economics literatures on perception and attention. A ubiquitous assumption in these liter-
atures is that agents receive a noisy mental signal about an uncertain state of the world.5

Our modeling innovation is to assume that this uncertain state of the world is the mecha-
nism’s extensive form and that agents receive noisy mental signals about the mechanism’s
extensive form. We follow these literatures in assuming that agents correctly form posterior
beliefs about the state based on these signals, and in the context of our model, these beliefs
summarize an agent’s uncertainty about the contingent payoffs to each action.

Relative to existing models of misperceiving mechanisms, our approach has two main
advantages for modeling behavior in the BDM. First, unlike the model of Cason and Plott
(2014), our approach is Bayesian, so it allows for partial recognition of the BDM’s game
form. In practice, this matters because partial game form recognition allows us to rationalize
offers in the BDM that cannot be explained by a belief in a single game form. In addition, a
Bayesian framework is needed to accommodate standard models of perception and attention,
such as rational inattention theory, which predict that decision makers will not internalize
all available information.6

Second, unlike the model of Li (2017), our approach allows for agents to be incorrect
about the set of possible payoffs to taking an action. The set of payoffs the agent thinks
are possible is determined by the set of mechanisms that the agent might confuse with the
BDM. Our approach requires the modeler to specify the game forms that an agent thinks are
possible, which presents a modeling challenge and provides the modeler an additional degree
of freedom. However, for the BDM, CP provide external justification for this modeling choice:
they find that subjects appear to confuse the BDM with a first-price sealed-bid procurement
auction (FPA hereafter). Collecting further non-choice data, such as beliefs about outcomes,
can be useful in providing external justification. For example, CP asked subjects to report
their payment after the posted price was realized, and many subjects incorrectly reported
monetary payments in line with the FPA payoff rule.7

5For example, noisy mental signals are central to signal detection theory, the drift diffusion model, and
rational inattention theory. In the economics literature, cognition is modeled with noisy mental signals in
Woodford (2014), Caplin and Martin (2015), Caplin and Dean (2015), Matějka and McKay (2015), and
Fudenberg, Strack, and Strzalecki (2017). As in these papers, our approach takes an as if perspective.

6Although we do not explore it here, a Bayesian framework also allows for learning about game form with
repeated play, as in Subjective Games (see Kalai and Lehrer 1995 and Oechssler and B. Schipper 2003).

7In addition, the set of extensive forms an agent confuses with a given extensive form are potentially
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Based on the findings of CP, we assume that the set of game forms an agent thinks are
possible when facing the BDM are the BDM and FPA. With this assumption, our model
generates a one-to-one map between an agent’s beliefs about the game form and their offers,
which can be used to rationalize many dominated offers. This map can also be used to infer
the beliefs agents hold about the likelihood of the BDM, and with these implied beliefs we
measure the extent of misperception subjects possess in BDM experiments.

To provide comparative static predictions for beliefs and offers, we further specialize
our model by assuming that mental signals are chosen optimally and signals have costs
proportional to their informativeness, as in rational inattention theory. We examine the
comparative static predictions for two model parameter values: one that represents the ben-
efits of perceiving the mechanism better and another that represents the costs of perceiving
the mechanism better. First, we investigate the comparative static prediction for a model
parameter that represents the benefits of perceiving the mechanism better: the maximum
posted price. As the maximum posted price in the BDM increases, subjects benefit more
from understanding the mechanism, so our model predicts that their misperception should
on average decrease. Thus, their implied beliefs (of the likelihood that they face the BDM)
should be higher on average. We can test this prediction using data from the CP experi-
ment because they varied the maximum posted price between and across subjects. Using
their data, we find that implied beliefs are higher when the maximum posted price increases,
which is consistent with the theoretical prediction.

It may be surprising that offers suggest misperception has decreased given that offers
are further from the dominant strategy as the maximum posted price increases. However,
our theoretical results show that such a divergence is possible as the maximum posted price
increases: subjects can make larger mistakes even though their misperception has decreased.8

Second, we investigate the comparative static prediction for a model parameter that
represents the costs of perceiving the mechanism better: the cost of information. As the cost
of information falls, our model predicts both a decrease in misperception (higher average
beliefs of the correct game form) and a reduction in the size of mistakes (lower average
offers). To test this prediction, we vary the cost of information by comparing a replication
of the CP experiment to a new experiment in which the payoffs to each action are specified
contingency-by-contingency, as in the experimental approach of Esponda and Vespa (2014).9

Seen through the lens of Martinez-Marquina, Niederle, and Vespa (2017), our contingent
protocol is easier computationally than the CP protocol because our contingent protocol

testable. For instance, in the appendix we show how the set of optimal actions varies as the set of alternatives
to the BDM varies, which produces testable content.

8We say subjects have made a “mistake” if a different offer would have increased their expected payoff.
9Mobius, Niederle, Niehaus, and Rosenblat (2011) and Coffman (2014) implement a BDM designed to

elicit probabilities that also focuses attention on contingencies.
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focuses a subject’s attention on a subset of random variable realizations, instead of the
whole set of potential random variable realizations.

When we implement this novel “contingent thinking” protocol for the BDM, we find that
the fraction of subjects playing in line with the dominant strategy doubles and that there
is a general shift in offers towards the dominant strategy. Using our approach to measure
misperception, we find that subjects are 45.6% more correct about the game form on average,
which corresponds to an average increase of 20.8 percentage points in the likelihood of the
correct game form. Given these results, our comparative static prediction for the cost of
information appears to be consistent with the data.

In Section 2, we discuss the relationship of our paper to existing literatures. In Section
3, we provide our model of mechanism misperception and its comparative static predictions.
Section 4 tests our comparative static prediction for benefits empirically using the data from
CP. Section 5 presents our replication of the CP experiment, introduces our new protocol,
and tests our comparative static prediction for costs. Section 6 concludes.

1 Literature Review

Our paper relates to several literatures, including ones that study mistakes in dominant-
strategy mechanisms, rational inattention in games and experiments, and failures of contin-
gent reasoning.

First, our paper relates to a literature on mistakes in dominant-strategy mechanisms. In
the context of public good provision, Chen (2008) provides a systematic review of empirical
evidence on the failure to truthfully report valuations in the pivotal mechanism. In this
order of ideas, Cason, Saijo, Sjöström, and Yamato (2006) introduce the notion of secure
implementation, and compare the rate of dominant strategy play in the pivotal and Groves
mechanisms, finding that in the latter, which is securely implementable, individuals are more
likely to play dominant strategies. Both notions coincide for the BDM, so a lack of secure
implementability does not offer an explanation for choice mistakes in our setting.

Kagel, Harstad, and Levin (1987) find that English auctions induce truthful bidding
behavior more often and in general closer to the truth-telling dominant strategy than its
counterpart, the second-price sealed-bid auction, even though they are strategically equiva-
lent. This fundamental finding has become part of the “folk wisdom” among auction theorists
(Ausubel 2004) and is a motivating fact in Li (2017). Harstad (2000) studies experimentally
the sealed-bid second-price auction and finds that even after allowing for learning effects
with feedback (70 rounds), subjects still fail to identify the dominant strategy.

A concurrent paper by Bull, Courty, Doyon, and Rondeau (2019) provides a replication
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of CP, and they also find failures to play a dominant strategy of the BDM mechanism. They
conduct three variations on the CP experiment and conclude that game form misperception
cannot explain differences in behavior across treatments. However, unlike our approach, they
assume that the probability of misperceiving the game form is not impacted by treatment
variation.

Second, our paper relates to the literature on rational inattention theory (Sims 2003)
because we use Shannon entropy to model the costs of optimally-chosen mental signals.
For instance, we draw on theoretical results for rational inattention in individual decision
problems (Caplin and Dean 2013; Caplin, Dean, and Leahy 2018) and costly information in
persuasion games (Kamenica and Gentzkow 2011).

When rational inattention theory has been applied to games, players are modeled as being
inattentive to an exogenous payoff-relevant source of information (for instance, see Matějka
2015, Yang 2015, and Ravid 2014). Alternatively, Martin (2017) considers the possibility
that players are inattentive to the strategic implications of actions.10 In this paper, we
propose a new form of inattention in games: being rationally inattentive to the game form
itself.

Several other studies have looked for evidence of rational inattention using lab exper-
iments. These experiments have studied rational inattention to the objects of choice (see
Cheremukhin, Popova, and Tutino 2011, Martin 2016, and Caplin and Martin 2017) and
rational inattention in perceptual tasks (see Dean and Neligh 2017, Dewan and Neligh 2017,
Khaw, Stevens, and Woodford 2017, and Ambuehl, Ockenfels, and Stewart 2018).11

Third, our paper relates to a growing literature on contingent reasoning, which is a
kind of thinking “that entails reasoning about events without knowing whether or not these
events are true or will occur” (Esponda and Vespa 2017). Papers in this literature have
studied contingent reasoning in a number of settings, such as common value and private value
auctions, as well as single decision maker problems that illustrate the Allais and Ellsberg
paradoxes.12

Esponda and Vespa (2017) provide a formal notion of contingent thinking in a Savage set-
ting with testable implications. One of the five settings they study is equivalent to the BDM.
Our new protocol is related to their contingent treatment, as it is intended to help agents
with contingent reasoning. However, a crucial difference in design is that we describe the
consequences of taking different actions in different states, whereas they focus the attention

10In the solution concept Rationally Inattentive Cursed Equilibrium (RICE) introduced in Martin (2017),
players trade off the costs and benefits of improving on their “cursed” strategic beliefs.

11Relatedly, Avoyan and Schotter (2016) use experiments to study the allocation of attention across games
when an agent faces more than one game at a time.

12See both the results and references presented in Esponda and Vespa (2014), Charness and Levin (2009),
and Esponda and Vespa (2017), as well as footnote 1 in Martinez-Marquina, Niederle, and Vespa (2017).
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of subjects onto a particular state. Martinez-Marquina, Niederle, and Vespa (2017) decom-
pose the difficulty of contingent reasoning into two parts: the number of states that need
to be considered (computational complexity) and the difficulty of coping with uncertainty
while having to think through the state space (lost of power of certainty).

As mentioned previously, the behavioral model of misperceiving mechanisms in Li (2017)
is based on a total failure of contingent reasoning. With this assumption, he shows that
extensive forms can be organized into equivalence classes based on the set of possible payoffs,
which leads to “local misunderestandings” of a game form within a class. Our approach allows
agents to instead possess something between perfect contingent reasoning and a total failure
of contingent reasoning. For instance, an agent might think through the contingencies for one
action, but not the other. This might happen if one action is more salient, for instance if it is
the default or recommended action. Such partial contingent thinking might even be optimal
if the payoffs to one action vary more across possible game forms and thinking requires costly
effort. Along these lines, the rational inattention version of our model endogenously produces
limits to contingent thinking based on the costs and benefits of understanding contingent
payoffs within the context of the BDM.

2 Model of Misperceiving the BDM

In this section, we first introduce our approach to imperfect perception of the BDM, and
then solve for optimal offers in the BDM with misperception. Finally, we consider how offers
and beliefs change with model parameter values if the misperception of agents responds to
the costs and benefits of correctly perceiving the BDM game form.

2.1 Misperception and the BDM

In the literatures on perception and attention, agents are assumed to receive noisy signals
about a state of the world ω ∈ Ω. Our innovation is to assume that Ω is the set of possible
extensive forms the agent could confuse the BDM with.13 While agents start off uncertain
about which ω ∈ Ω they face, they are able to reduce their uncertainty by thinking about
the extensive form of the game they face. When there are cognitive limits in thinking about
game form, this can produce game form misrecognition, which is “a failure of the decision
maker to recognize the proper connections between the acts available for choice and the
consequences of choice” (Cason and Plott 2014, p. 1237).

Following CP, we analyze the case where subjects could confuse this game form with
13We assume that agents are aware of the set of possible extensive forms, which rules out interesting

possibilities for unawareness (such as those considered by Meier and B. C. Schipper 2014).
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the FPA. Thus, the states of the world Ω = {ω0, ω1}, where ω0 corresponds to the BDM
and ω1 corresponds to the FPA.14 While other forms of misconceptions are possible, CP
primarily focus on this one alternative game form because it can explain many offers and
because it reflects the mistakes that some subjects make in indicating the payment they
should receive.15 As in CP, the restriction to having just two possible game forms greatly
simplifies our analysis. For similar reasons, papers in the perception and attention literature
often analyze settings where there are just two possible states of the world. However, while
expanding the size of the state space is likely to reduce analytic tractability, our model is
still in principle solvable with more than two possible game forms.

The prior beliefs that an agent has about the likelihood of facing alternative extensive
forms is µ ∈ ∆(Ω). This prior could be set exogenously by an experimenter, determined by
an individual’s experience in a particular laboratory, or formed from day-to-day interactions.
Also, it could be correct given the likelihood of encountering a particular game in a particular
setting, but it need not be correct. The prior probability an agent assigns to payoffs being
determined by the BDM is given by µ(ω0). For convenience, we abuse notation and denote
µ := µ(ω0) as the prior probability of state of world being ω0. In other words, µ is the
agent’s belief of the likelihood they could face the BDM. Determining the prior of an agent
about game forms is an empirically challenging task,16 any of the theoretical results in this
paper, such as our comparative static predictions, will be robust to changes in the prior.

Before choosing a strategy, the agent receives a mental signal about the game form the
face, which represents their subjective perception of the game they are facing. This signal
can be fully informative about the game form, but it can also be fuzzy and stochastic, such as
the mental signal received by a subject who does not put much cognitive effort into thinking
about the game they are facing.17 Thus, while our model allows for misperception, it also
nests the standard model without misperception.

As in Kamenica and Gentzkow (2011), the agent’s signal is represented by an information
structure π : Ω → ∆(∆(Ω)), where Γ(π) ∈ ∆(Ω) is the set of posterior beliefs supported
by π. We restrict information structures to those that contain Bayes plausible posteriors

14The action set is identical in both states of the world, as well as the information sets. The only difference
is the way an agent believes payoffs are determined.

15In the appendix, we show how the optimal strategy changes if we assume instead that subjects confuse
the BDM with other game forms besides the FPA. Some of these alternative game forms were proposed as
possibilities in footnote 19 of CP.

16If we could elicit a subject’s beliefs about the game form they think they are facing, this would produce
strong testable predictions for our model. However, such beliefs are challenging to elicit directly because of
their probabilistic nature. See Bartling, Engl, and Weber (2015) for an example where deterministic beliefs
about the BDM are elicited.

17This differs from Compte and Jehiel (2007), who study the impact of an agent acquiring information
about their valuations, not the game form itself.
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according to the prior µ, which we denote by Π(µ). This posterior-based approach is used to
model imperfect perception and limited attention by Caplin and Martin (2015), Caplin and
Dean (2015), and Matějka and McKay (2015). Note that this can include any information
structure, including those that are chosen optimally and those that are not. For convenience,
we abuse notation and denote γ := γ(ω0) as the posterior probability of state of world being
ω0. In other words, γ is the agent’s belief of the likelihood they are actually facing the BDM
when choosing their offer strategy.

2.2 Offers with Misperception

With the BDM, a subject who values a good at θ is asked to choose an “offer” price b, which
corresponds to the minimum price they are willing to sell the good. Next, a “posted” price
p is randomly drawn from a distribution f on [0, p̄]. We will follow the standard assumption
that f is the uniform distribution. If p ≥ b the good is sold and the agent is paid p.
Otherwise, the agent keeps the good and obtains θ. Thus, the agent’s ex-ante payoff from
offering a minimum price b is given by∫ p̄

0
[θ1[p < b] + p1[p ≥ b]] df(p) (1)

with b∗BDM = θ being a weakly dominant offer strategy.

With the FPA, the timing is the same, but if p ≥ b the good is sold, the agent is paid b
instead. Thus, the agent’s ex-ante payoff from offering a minimum price b is given by∫ p̄

0
[θ1[p < b] + b1[p ≥ b]] df(p). (2)

Since f is uniform, the optimal offer strategy is b∗FPA = θ+p̄
2 .

With misperception of mechanisms, the agent may unsure of which payoff rule they face,
so their optimal offer strategy will reflect this uncertainty. Based on their posterior belief γ,
the agent chooses a minimum selling price b to maximize∫ b

0
θdf(p) +

∫ p̄

b
[γp+ (1− γ)b]df(p).

Since f is uniform, the above expression is strictly concave in b, which guarantees existence.
In addition, the unique optimal offer strategy is given by

b∗(γ) = θ + (1− γ)p̄
2− γ . (3)

In practice, offers are monetary amounts, so are limited to discrete increments, such as
dollars or pennies. In the appendix, we solve for the optimal offer strategy when offers are
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b∗

θ+p̄
2

θ

0 1 γ

Figure 1: Map between an agent’s belief of the likelihood they are facing the BDM (γ) and their
optimal offer (b∗).

restricted in this way. The solution for discrete increments converges to the solution above
as the increments become infinitesimally small.

The map between optimal offers and beliefs is illustrated in Figure 1. As long as θ ≤ p̄,
the optimal offer is decreasing in γ (moving to the right along the line), and for a given γ,
the optimal offer is increasing in p̄ (the line shifts out as the y-intercept moves up and the
x-intercept remains fixed).

Note that the optimal offer strategy reduces to the standard optimal strategies when
posteriors are degenerate. Specifically, b∗(1) = b∗BDM = θ and b∗(0) = b∗FPA = θ+p̄

2 . As a
result, all offers in the range [θ, θ+p̄2 ] can be rationalized by our model. This expands the set
of explainable offers relative to either the standard approach (without misperception) or an
all-or-nothing model of misperception (as in CP). By extending our model to incorporate
other behavioral forces (such as the endowment effect), it could also explain offers made
outside of this range.

2.3 Offers with Optimal Misperception

Without any additional restrictions on the form of misperception, our model does not indicate
how posterior beliefs and offers will change as model parameter values change. A natural
restriction on misperception is to assume that information structures are chosen optimally.
We assume further that information carries entropic costs, as in rational inattention theory.

The timing of this specialization is summarized in Figure 2. After observing the value of
the good, the agent chooses an information structure. Once a posterior is observed, an offer
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Type θ is privately
observed

π : Ω →
∆(∆(Ω))
is chosen

Signal (or
posterior)
is privately
observed

Offer price
b is chosen

Posted
price p
is deter-
mined

Payoffs are de-
termined ac-
cording to ω0

Figure 2: The timeline for optimal misperception of the BDM.

price is chosen, a posted price is realized, and payoffs are determined.

We solve this model backwards. First, fixing a posterior, the optimal offer strategy is
given by (3), which has an expected payoff of

p̄2 + 2p̄(1− γ)θ + θ2

2p̄(2− γ) (4)

Next, considering the cost it will entail, an information structure is chosen optimally,
subject to Bayesian plausibility. Specifically, let the cost of any information structure π be

K(π, κ, µ) = κEπ[H(µ)−H(γ)]

with H(γ) = −∑ω∈Ω γ(ω) ln(γ(ω)). The parameter κ linearly scales the cost of an informa-
tion structure, so can be interpreted as the marginal cost of information.

Given prior µ, the value of choosing the optimal information structure can be written as

V (µ) = max
π∈Π(µ)

Eπ [v̂(γ)]

s.t. Eπ[γ] = µ

where for all γ ∈ Γ(π)

v̂(γ) = p̄2 + 2p̄(1− γ)θ + θ2

2p̄(2− γ) − κ(H(µ)−H(γ)) (5)

Since v̂ is continuous, an optimal information strategy exists.

This problem can be mapped into the sender’s problem in the “costly persuasion” frame-
work of Gentzkow and Kamenica (2014) by choosing the reference belief to be the prior µ
and the value of the induced belief (adjusted for the cost of inducing that belief) to be v̂(γ).18

18In the framework of Gentzkow and Kamenica (2014), the reference belief does not need to coincide with
the prior. Instead, it can be any fixed interior belief against which the cost of an information structure
is assessed. In our case, the reference belief happens to coincide with the prior, which is inconsequential
because the optimal information structure is independent of the fixed reference belief.
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Because V (µ), the value of the above program, is the concave closure of v̂(µ), the con-
cavity of v̂ determines whether or not the agent benefits from choosing an informative infor-
mation structure. We say an information structure is “informative” if it generates posterior
beliefs that are different from the prior.

The function v̂ is twice differentiable on (0,1), and its concavity is fully characterized by

∂2v̂

∂2γ
= (p̄− θ)2

p̄(2− γ)3 −
κ

γ(1− γ)

It is easily inferred from this expression that there are two cases: On the one hand, if
κp̄

(p̄−θ)2 < 1
6
√

3 the domain of the function v̂ can be partitioned in three regions (strictly
concave, strictly convex, and then strictly concave) . For the set of priors between the
strictly concave regions, V (µ) > v̂(µ), so it is optimal to choose an informative information
structure. Outside this region, the agent regards the BDM game form to be either very
unlikely or very likely, so it is not worth choosing an informative, but costly, information
structure.

On the other hand, if κp̄
(p̄−θ)2 >

1
6
√

3 , v̂ is strictly concave for all µ, so it is never optimal
to choose an informative information structure. This establishes the following claim.

Claim 1 There exists a set of priors such that choosing an informative information structure
is optimal if and only if κp̄

(p̄−θ)2 <
1

6
√

3 .

While an optimal information structure exists for all model parameter values, this con-
dition indicates when the optimal information structure will or will not contain informative
mental signals (in other words, when it is degenerated for all priors). It follows that when
this condition holds, the optimal information structure has two posteriors in its support,
that we denote by γ∗1 and γ∗2 . Also, these posteriors are unique for a fixed prior. Otherwise,
a contradiction with strict concavity would be reached.

Since v̂ is differentiable everywhere in (0, 1), it is possible to give a differential charac-
terization of the optimal posteriors, which turns out to be useful for deriving comparative
statics. In the spirit of the ILR conditions of Caplin and Dean (2013), these restrictions are:

1. Same slope of v̂ at the optimal posteriors:

∂v̂

∂γ

∣∣∣∣∣
γ∗1

= ∂v̂

∂γ

∣∣∣∣∣
γ∗2

(6)

2. Same tangent of v̂ and V at the optimal posteriors:

v̂(γ∗1)− v̂(γ∗2) = γ∗1
∂v̂

∂γ

∣∣∣∣∣
γ∗1

− γ∗2
∂v̂

∂γ

∣∣∣∣∣
γ∗2

(7)
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0 γ∗2γ∗1 µ

Figure 3: An example of v̂ (curved line in black) and the tangent of v̂ (straight line in red) at the
optimal posteriors.

This differential characterization is broadly discussed in Caplin and Dean (2013), and
we refer the interested reader to their paper. A geometric intuition can be provided using
Figure 3. The curved black line corresponds to v̂, and the straight red line corresponds to
the unique line tangent to v̂ at the optimal posteriors. The concave closure of v̂ coincides
with v̂ on the intervals [0, γ∗1) and (γ∗2 , 1] and with the tangent line on [γ∗1 , γ∗2 ]. The first
restriction says that the slope of v̂ at the optimal posteriors is the same. The second adds
the restriction that the red line has the same slope as v̂ at the optimal posteriors.

Finally, we consider the impact of this optimal information structure on offers. If the
agent has a prior µ ∈ [0, γ∗1) ∪ (γ∗2 , 1], the prior and posterior will coincide, so the agent’s
optimal offer is b∗(µ). Otherwise, if the agent’s prior belongs to [γ∗1 , γ∗2 ], the posterior is
stochastically determined to be one of the two optimal posteriors characterized above, so the
agent’s offer will sometimes be b∗(γ∗1) and sometimes be b∗(γ∗2). To simply testing, we will
establish our comparative static predictions for average offers.

For a given µ, the average offer is a straight line if we do not condition on the state, which
is illustrated by Figure 4. However, if we just look at average offers when agents face the
BDM (when the state is ω0), the average offer bows towards the standard optimal strategy
without misperception, as illustrated by Figure 5.
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E[b∗]

θ

θ+p̄
2

0 1γ∗2(p̄)γ∗1(p̄) µ

Figure 4: An example of the impact of optimal misperception on average offers (without condi-
tioning on the state).

E[b∗]

θ

θ+p̄
2

0 1γ∗2(p̄)γ∗1(p̄) µ

Figure 5: An example of the impact of optimal misperception on average offers when agents face
the BDM (conditional on the state being ω0).
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2.4 Comparative Statics of Optimal Misperception

In this section we establish comparative static predictions for two parameters of our spe-
cialized model: the maximum posted price and the cost of information. We first examine
how a change in each parameter impacts the optimal posteriors, and then average optimal
posteriors. Last, we determine the impact of a change in each parameter on average offers.

2.4.1 Comparative Statics: Optimal Posteriors

The maximum posted price (p̄) and the cost of information (κ) impact optimal posteriors in
systematic ways. As p̄ increases, an agent has more incentive to obtain informative mental
signals of the game form, so the region of priors for which it is optimal to do so enlarges. On
the other hand, as κ increases, the region of priors for which it is optimal to obtain informative
mental signals of the game form shrinks. These comparative statics are established with the
following two claims.

Claim 2 Assume κp̄
(p̄−θ)2 <

1
6
√

3 and without loss of generality that γ∗1 < γ∗2 . Optimal posterior
γ∗1 decreases with p̄, and optimal posterior γ∗2 increases with p̄.

Proof. Use the implicit function theorem to derive conditions (6) and (7) implicitly with
respect to p̄ > 0 and solve for v̂′′(γi)∂γi

∂p̄
, i = 1, 2 to obtain

v̂′′(γi)
∂γi
∂p̄

= 1
γj − γi

(γj − γi)2(p̄2 − θ2)
2(2− γj)(2− γi)2p̄2

i 6= j, i, j = 1, 2. Since γ1 < γ2, the right-hand term is positive for i = 1 and negative
for i = 2. Combined with the fact that v̂ is strictly concave in the optimal posteriors, this
implies ∂γ1

∂p̄
< 0 and ∂γ2

∂p̄
> 0, as desired.

Claim 3 Assume κp̄
(p̄−θ)2 < 1

6
√

3 and without loss of generality that γ∗1 < γ∗2 . Optimal
posterior γ∗1 increases with κ, and optimal posterior γ∗2 decreases with κ.

Proof. Since by assumption γ∗1 < γ∗2 , use again the implicit function theorem to derive
conditions (6) and (7) implicitly with respect to κ, and solving for v̂′′(γi)∂γi

∂κ
for i = 1, 2, we

obtain:
v′′(γ1)∂γ1

∂κ
= H(γ1)−H(γ2)− (γ1 − γ2)H ′(γ1)

γ1 − γ2

and

v′′(γ2)∂γ2

∂κ
= H(γ1)−H(γ2)− (γ1 − γ2)H ′(γ2)

γ1 − γ2
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i 6= j, i, j = 1, 2. Since γ1 < γ2 by assumption, the denominator in both expressions is
negative. It follows from strict concavity and differentiability of the entropic cost function
that H(γ1)−H(γ2)+H ′(γ1)(γ2−γ1) ≥ 0 and H(γ1)−H(γ2)−H ′(γ2)(γ1−γ2) ≤ 0. Therefore,
the right-hand side in the first expression is negative and is positive in the second one. Since
v̂ is concave in the optimal posteriors, we have that ∂γ1

∂κ
≥ 0 and ∂γ2

∂κ
≤ 0, as desired.

2.4.2 Comparative Statics: Average Optimal Posteriors

Building on previous claims, we first show that when agents face the BDM, the average belief
is increasing in the maximum posted price (p̄).19 Sensibly, as the benefits to perceiving the
game form correctly increase, so do the average beliefs of the correct game form. Next, we
show that when agents face the BDM, the average belief decreases as the cost of information
(κ) increases. As it gets harder and harder to disentangle states, the extent of misperception
increases on average.

Proposition 4 Let E[γ|ω0, p̄] be the expected belief when facing the BDM and the maximum
posted price is p̄. If p̄′ > p̄, then E[γ|ω0, p̄

′] ≥ E[γ|ω0, p̄] for any prior µ.

Proof. By definition,

E[γ|ω0] = π(γ∗1 |ω0)γ∗1 + π(γ∗2 |ω0)γ∗2

= πγ∗1
µ
γ∗1 + (1− π)γ∗2

µ
γ∗2

with γ∗1 , γ∗2 , and π implicit functions of p̄. By definition π is constrained to satisfy

γ∗1π + γ∗2(1− π) = µ

so we can rewrite

E[γ|ω0] = 1
µ

(
γ∗2 − µ
γ∗2 − γ∗1

)
(γ∗1)2 + 1

µ

(
1− γ∗2 − µ

γ∗2 − γ∗1

)
(γ∗2)2 = γ∗2 + γ∗1 −

γ∗2γ
∗
1

µ
(8)

By using the chain rule to derive E[γ|ω0] w.r.t. p̄, we obtain

dE[γ|ω0]
dp̄

= ∂E[γ|ω0]
∂γ∗1

∂γ∗1
∂p̄

+ ∂E[γ|ω0]
∂γ∗2

∂γ∗2
∂p̄

and because ∂E[γ|ω0]
∂γ∗1

< 0 and ∂E[γ|ω0]
∂γ∗2

> 0 (from 8), we conclude from Claim 2 that dE[γ|ω0]
dp̄

> 0
as desired.

19We condition the state on when agents face the BDM because our interest is in the comparative statics
of optimal misperception when subjects are facing the BDM.
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Proposition 5 Let E[γ|ω0, κ] be the expected belief when facing the BDM and the cost of
information is κ. If κ′ > κ, then E[γ|ω0, κ

′] ≤ E[γ|ω0, κ] for any prior µ.

Proof. Using the chain rule to derive E[γ|ω0] w.r.t. κ, we obtain

dE[γ|ω0]
dκ

= ∂E[γ|ω0]
∂γ∗1

∂γ∗1
∂κ

+ ∂E[γ|ω0]
∂γ∗2

∂γ∗2
∂κ

and because ∂E[γ|ω0]
∂γ∗1

< 0 and ∂E[γ|ω0]
∂γ∗2

> 0 (see eq. 8), from Claim 3 we conclude that
dE[γ|ω0]

dκ
≤ 0, as desired.

2.4.3 Comparative Statics: Average Offers

Last, we examine how average offers change as the maximum posted price (p̄) and the cost
of information (κ) change. When agents are facing the BDM, the average offer can either
increase or decrease with p̄ depending on the prior, but the average offer increases with κ

for all priors.

Because the average optimal posterior increases with p̄, we might expect the average
offer to decrease with p̄. However, this is not true in general, as the example in Figure 6
illustrates. Note that in general, the expression for the average offer, conditional on facing
the BDM, is given by

E[b(γ)|ω0, µ] =

[γ∗2A− γ∗1B] 1
µ
− (A−B) if µ ∈ [γ∗1 , γ∗2 ],

b(µ) otherwise.

where A = γ∗1
γ∗2−γ

∗
1
b(γ∗1) and B = γ∗2

γ∗2−γ
∗
1
b(γ∗2). Observe that the expected offer is convex in the

region of the domain where information is valuable.

When it is not valuable to get informative mental signals, b∗(γ) shifts out as p̄ increases,
which means that there is an increase in the expected offer for all such µ. At the same time,
an increase in p̄ widens the region of priors for which it is optimal to get informative mental
signals. For such priors, when p̄ increases, the rate at which the average offer moves closer
to the standard one increases. The net result is that the comparative static is uncertain and
any behavior can be rationalized by assuming a particular prior (or a particular distribution
of priors across subjects).

On the other hand, when κ increases, the average offer moves in a consistent direction for
all priors. A higher information cost decreases the value of disentangling the two states, and
as a result, the agent misperceives the game form more often, resulting in a higher average
offer. This is illustrated in Figure 7 and formally established in the following proposition.
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E[b∗]

θ+6
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θ+5
2

θ+4
2

θ

1 µ0

Figure 6: An example of E[b∗(γ)|ω0] where p̄ = 4 (blue), p̄ = 5 (black) p̄ = 6 (red), and κ = 0.1.

E[b∗]

θ

θ+p̄
2

0 1 µ

Figure 7: An example of the impact of an increase in the cost of information on the average
expected offer when agents are facing the BDM. The dashed line corresponds to a higher κ than
the one for the solid line.
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Proposition 6 Let E[b∗(γ)|ω0, κ] be the expected offer when facing the BDM and the cost
of information is κ. For κ′ > κ, then E[b∗(γ)|ω0, κ

′] ≥ E[b∗(γ)|ω0, κ] for any prior µ.

Proof. For convenience, let g(µ, κ) = E[b∗(γ)|ω0]. First, note that by Claim 1, for κ′ ≥ θ2

6
√

3p̄ ,
g(µ, κ′) = b∗(µ) as choosing an uninformative information structure is optimal for every prior
and the claim is trivially satisfied. For κ < θ2

6
√

3p̄ , let γ
∗
1(κ) ≤ γ∗2(κ) be the unique posteriors

in the optimal signal structure for any µ ∈ [γ∗1(κ), γ∗2(κ)]. Claim 3 implies that for any
κ′ > κ, [γ∗1(κ′), γ∗2(κ′)] ⊆ [γ∗1(κ), γ∗2(κ)]. Therefore, we have three cases: In the first case,
µ ∈ [0, γ∗1(κ)] ∪ [γ∗2(κ), 1], so we have g(µ, κ) = b∗(µ) = g(µ, κ′).

In the second case, µ ∈ [γ∗1(κ), γ∗1(κ′)] ∪ [γ∗2(κ′), γ∗2(κ)], we have g(µ, κ′) = b∗(µ), and
since b∗(µ) is strictly concave in µ we have g(µ, κ′) > πb∗(γ∗1(κ)) + (1 − π)b∗(γ∗2(κ)) for π
s.t. πγ∗1(κ) + (1 − π)γ∗2(κ) = µ. Since b∗(·) is decreasing, and πγ∗1

µ
< π, (1−π)γ∗2

µ
> 1 − π, we

have that πb∗(γ∗1(κ)) + (1 − π)b∗(γ∗2(κ)) > πγ1
µ
b∗(γ∗1(κ)) + (1−π)γ2

µ
b∗(γ∗2(κ)) = g(µ, κ), so the

conclusion follows.

In the third case, µ ∈ [γ∗1(κ′), γ∗2(κ′)], with g(µ, κ′) = π′γ1
µ
b∗(γ∗1(κ′)) + (1−π)γ2

µ
b∗(γ∗2(κ′)) for

π′ s.t. π′γ∗1(κ′) + (1 − π′)γ∗2(κ′) = µ. Since g(µ, κ) can be written as (see next paragraph)
π′g(γ∗1(κ′), κ) + (1 − π′)g(γ∗2(κ′), κ), from strict concavity of b and the definition of g(µ, κ′)
we conclude the desired inequality.

To see that g(µ, κ) = π′g(γ∗1(κ′), κ) + (1− π′)g(γ∗2(κ′), κ), note that g(µ, κ), g(γ∗1(κ′), κ),
and g(γ∗2(κ′), κ) are by definition convex combinations of b∗(γ∗i (κ)), i = 1, 2 with the distribu-
tion over γ∗i (κ) such that they average average to the corresponding prior, i.e. πγ∗1(κ) + (1−
π)γ∗2(κ) = µ, πγ∗1 (κ′)γ

∗
1(κ)+(1−πγ∗1 (κ′))γ∗2(κ) = γ∗1(κ′), πγ∗2 (κ′)γ

∗
1(κ)+(1−πγ∗2 (κ′))γ∗2(κ) = γ∗2(κ′).

These necessary conditions combined with the fact that π′γ∗1(κ′) + (1− π′)γ∗2(κ′) = µ leads
to what is required for the equality of interest to hold.

3 Using Existing Data to Study Comparative Statics

In this section, we test our comparative static prediction for benefits by re-examining ex-
isting data. In the BDM experiment of CP, the benefits for accurate perception are varied
because the maximum posted price varies, which allows us to examine if the level of misper-
ception changes when the incentives to correctly perceive the game form change. Looking
across maximum posted prices, we find evidence that misperception decreases when there are
higher incentives to correctly perceive the game form, which is consistent with the theoretical
prediction.
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3.1 Offers in the CP Experiment

In the CP experiment, subjects were provided with a physical card that gave instructions for
a seller version of a sealed-bid BDM mechanism. CP used the BDM to elicit the amount of
money subjects would be willing to accept for the card itself, which could be exchanged later
for $2 if not sold. Thus, if the game form was perceived perfectly, the dominant strategy
was for subjects to offer $2 for their card.

After receiving the card, subjects provided an offer price for their card and then turned
over the card to reveal a posted price and filled in their actual payments in light of this
posted price. In a second round, subjects were then given a new card, also worth $2, and
completed the BDM again.

The minimum posted price was always $0, but between subjects, the maximum draw for
the posted price p̄ varied between $4, $5, $6, $7, and $8, and within subject, the maximum
posted price p̄ varied in the same way between cards.

As described in detail in the preceding section, our model predicts that offers will increase
for some parameter values and decrease for others. CP report that the mean offer in their
experiment is mostly increasing with the maximum draw p̄, and for offers outside of $0.05 of
$2, the mean offer is monotonically increasing in the value of the maximum draw p̄. In a linear
regression of offers onto the maximum posted price and round, the coefficient on maximum
posted price is positive and statistically significant (coefficient=0.216, p-value<0.001 with
robust standard errors clustered at the subject level). This means that a $1 increase in the
maximum posted price corresponds to an approximately $0.22 increase in offers.

While average offers differ between maximum posted prices, the percent of subjects who
offered within $0.05 of $2 does not appear to increase with the value of the maximum
posted price p̄. In a linear regression of a dummy variable indicating whether an offer is
near $2 onto the maximum posted price and round, the coefficient on maximum posted
price is not statistically significant (coefficient=0.004, p-value=0.783 with robust standard
errors clustered at the subject level). This suggests that changes in the benefits to accurate
perception largely impact the intensive margin of perception, which helps to justify models
of partial game form misperception.

3.2 Using Implied Beliefs to Measure Misperception

Assuming subjects misperceive game form, we can use their offers to determine their “im-
plied” beliefs of how likely they are to be facing the BDM by inverting the optimal offer
function (3). Specifically,

γ = θ + p̄− 2b
p̄− b

(9)
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Figure 8: Offers and implied beliefs for the posted price ranges in CP.

Because p̄ is in this equation, the same offer implies different beliefs depending on the range
of posted prices.20 The map between implied beliefs and offers for the different posted price
ranges used in the CP experiment is illustrated in Figure 8. The fact that the same offer
corresponds to different implied beliefs for different maximum posted prices will play a central
role in our subsequent analysis because when looking across posted price ranges, increases
in offers (moving away from the dominant strategy) may not correspond to increases in
misperception about the mechanism’s extensive form.

Because beliefs are bounded between 0 and 1, this relationship places restrictions on the
offers that are consistent with our model.21 Across posted price ranges, 75.9% of offers are
consistent with our model for the first card and 79.5% are consistent with our model for the
second card.22 These rates are not statistically different (two-sided p-value=0.3402 using a
test of proportions), which means that we do not have evidence that experience increases
consistency with our model.

20Because increments of the posted price are small ($0.01), the discretized version of this equation is
virtually indistinguishable. In practice, the difference in the continuous and discrete versions is less than
half a percentage point, so we use the continuous version throughout our analysis.

21We allow a 5 percentage point margin, so implied beliefs between -0.05% and 1.05% sure of the correct
game form are considered consistent with our model.

22If an agent was to chose offers randomly between $0 and p̄, then approximately 25% of offers would be
consistent with our model when p̄ = 4, and approximately 38% would be consistent when p̄ = 8.
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3.3 Comparative Statics for Benefits

As we have shown in our theoretical comparative static analysis, the average belief of the
BDM should increase with p̄. In other words, misperception should fall as benefits to accurate
perception increase. We now use the implied beliefs of subjects in the CP experiment to test
this prediction.

We find a clear trend in implied beliefs for consistent subjects. Looking just at con-
sistent subjects, a linear regression of offers onto the maximum posted price and round,
the coefficient on maximum posted price is once again both positive and statistically sig-
nificant (coefficient=0.032, p-value=0.022 with cluster robust standard errors). This means
that holding the round fixed, increasing the maximum posted price by $1 corresponds to an
approximately 3 percentage point increase in beliefs of the correct game form.

These results provide a key insight about mistakes in the BDM. Because choice mistakes
are increasing in size with p̄, it might seem that subjects are becoming less informed about the
mechanism. However, our regression results suggest that misperception is actually decreasing
with the maximum posted price.

As established previously, a higher maximum posted price should lead subjects to be
more certain of game form, but the impact of changing the maximum posted price on offers
is ambiguous. Using the map between beliefs and offers, we can determine whether both mis-
takes and misperception are increasing or whether mistakes are increasing despite a decrease
in misperception.

4 Using New Data to Study Comparative Statics

In this section, we test our comparative static prediction for costs by running new exper-
iments. To vary the cost of information, we use variation in the experimental protocol.
Specifically, we implement both a replication of the CP experiment and a new protocol in
which payoffs are explained contingency-by-contingency.

4.1 Our Replication of the CP Experiment

We first replace the CP experiment with a new subject pool and setting. Instead of un-
dergraduate students completing the experiment in a classroom as in CP, our participants
were all part of the Kellogg School of Management panel on Amazon’s Mechanical Turk
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(MTurk) and completed our experiment online.23 Subjects in this panel are required to be
U.S. residents over the age of 18. Following Cavallo, Cruces, and Perez-Truglia (2017), we
used many of the best practices identified in the literature for getting high quality responses
when running studies on MTurk.24 Even with these methods, we received some offers well
over the maximum posted price p̄. These outliers could represent data entry errors and are
not consistent with any of the explanations we considered, so we did not include offers over
the maximum posted price in any of the analyses in this section. For our baseline replication,
this reduced our sample by 3.6%.25 After removing these offers, our analysis sample for the
baseline replication consisted of 190 subjects (57.4% Female; Mage = 38.9, SDage = 12.6).

Because our subjects took our experiment online, we needed to make one substantial
change to the design, which was to replace the card with a digital token.26 We made two
other changes. First, we made the value of the token $1 instead of $2. Second, we told
subjects the distribution from which posted prices were drawn. In our baseline replication,
we chose to draw posted prices uniformly from $0 to $3 in increments of $0.50. In prac-
tice, it is challenging to implement the BDM at finer increments because payments become
cumbersome, but as a robustness check, we also run a version with increments of $0.01.

We find that the baseline replication produces similar results to the first round of the CP
experiment. To compare offers directly, we rescaled offers in the CP experiment by dividing
them by 2, as the value of the card is twice the value of the token. Given the differences in
pools, settings, and design, it may be surprising that the results replicated so closely.

As shown in Table 1, the proportion of offers near $1 is similar (17.6 for rescaled CP offers
across posted prices ranges and 17.4 for our replication) and not statistically different using
a two-tailed test of proportions (p-value=0.9603). The mean of the rescaled CP offers across
posted price ranges in the first round (1.70) is also similar to the mean of the offers in our
baseline replication (1.63), and the distributions are not statistically different using a two-
tailed Wilcoxon rank-sum test (p-value=0.3764). Figure 9 provides these two distributions
side-by-side.

As mentioned previously, we also tested the robustness of our replication by having
92 subjects complete our replication but with posted prices drawn from $0.01 increments.
We find more offers between $0.50 increments when posted prices are drawn from smaller
increments, but as shown in Table 1, the percent of subjects offering near $1 is similar (17.4%

23Bull, Courty, Doyon, and Rondeau (2019) also replicate the CP experiment, but with university students
and in a classroom as in CP.

24This included requiring subjects to complete a standard attentional check question at the start of the
experiment, which was passed by 97.0% of subjects who started the baseline replication.

25For technical reasons, CP also removed offers over p̄ in their maximum likelihood estimation procedure,
but this was just 0.8% of second round offers.

26See the appendix for the instructions for this replication.
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Baseline CP round 1 Baseline=CP
replication (rescaled) p-value

Observations 190 245
Mean offer $1.70 $1.63 0.3764

($0.73) ($0.56)
Percent offer near $1 17.4% 17.6% 0.9603
Mean offer if not near $1 $1.85 $1.76 0.0844*

($0.72) ($0.53)

(a) Baseline replication v. CP round 1.

Baseline Robustness Baseline=Robustness
replication check p-value

Observations 190 92
Mean offer $1.70 $1.58 0.1792

($0.73) ($0.64)
Percent offer near $1 17.4% 18.5% 0.8190
Mean offer if not near $1 $1.85 $1.71 0.0845*

($0.72) ($0.64)

(b) Baseline replication v. robustness check.

Table 1: Summary statistics for our replications and rescaled offers from the CP
experiment. Offers in the CP experiment are divided in half. An offer is “near $1” if it is within
$0.05 of $1. Standard errors are in parentheses. p-values are from two-tailed tests of proportion
for percents and from two-tailed Wilcoxon rank-sum tests otherwise. *** p<0.01; ** p<0.05; *
p<0.10.
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Figure 9: Offers in our baseline replication and scaled first round offers in CP pooled across posted
price ranges.

for the baseline replication and 18.5% for the robustness check) and the distribution are not
statistically different using a two-tailed Wilcoxon rank-sum test (p-value=0.1792).27

In practice, it is common to tell subjects the dominant strategy of a mechanism, with the
hope of avoiding problems of misperception entirely. With this in mind, we ran an additional
robustness check in which we informed subjects about the dominant strategy in the area just
above the box where they entered their offers. Specifically, we stated: “The rule for selling
the token is given below. It is a bit unusual, but its implications are straightforward. There
is no way of gaming the rule, the BEST thing that you can do is to ask yourself how much
you would be willing to exchange the token for, and then offer the number closest to that
amount.” For the 44 subjects who saw this statement, the average offer price ($1.58) and
the percent offering near $1 (18.2%) were very similar to the corresponding figures for the
robustness check without this statement.28 In a post-experiment questionnaire, 81.8% of
subjects indicated that they trusted the statement, but 97.2% indicated that they decided
to “read the rule anyway.” If subjects are attempting to read the rule anyway, then it is
possible that even in this treatment, subjects are misperceiving the mechanism and acting
based on their fuzzy perception of the mechanism’s game form.

27We also ran an robustness check in which 137 subjects first completed our robustness check and then
either our baseline replication or our contingent protocol, and those results appear in the appendix.

28For this additional robustness check, we also used $0.01 increments in the distribution of posted prices.
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4.2 A New Contingent Protocol

To test the comparative static prediction, our goal is to make it “easier” for a subject to
understand the BDM’s extensive form. However, because our model does not provide an
explicit map between experimental protocols and the cost of information, we draw inspiration
from the literature, primarily the method of explaining payoffs contingency-by-contingency,
as in Esponda and Vespa (2014).

In our “contingent” protocol, we frame each posted price as a separate computer bidder,
one of which the subject will be paired with. Each bidder offers a different bid, and like the
posted prices in the baseline replication, they are spaced in $0.50 increments. The payoff
rule is identical to the one in the baseline replication: if the offer (the “minimum amount
you are willing to sell the token for”) is at or below the computer’s bid, the subject sells the
token at the computer’s bid.29

This protocol has similarities to methods for eliciting valuations that have been proposed
in the experimental literature. It could be argued that the closest elicitation approach to ours
is what Healy (2018) calls the “randomized binary choice” (RBC) elicitation mechanism. In
this mechanism, subjects chose at each price whether they would like to sell at that price
and a consistent switching point is enforced. For payment, a random choice is selected to
be implemented.30 Mobius, Niederle, Niehaus, and Rosenblat (2011) and Coffman (2014)
implement an RBC to elicit probabilities that has a very similar framing to ours. In their
task, subjects chose which robots they would let choose for them (by selecting a threshold
robot), where each robot had between a 1 and 100 chance of being correct (and a random
robot was then selected). Like the RBC, our contingent protocol for the BDM highlights the
payoffs for each contingency. While it could be argued that the RBC method for eliciting
values is a simpler procedure, our contingent protocol is useful for studying misperception in
the BDM, as it is closer to the CP protocol (because subjects set a price instead of choosing
directly in which contingencies to sell).

4.3 Comparative Statics for Costs

Our analysis sample for the contingent protocol consisted of 192 subjects (59.4% Female;
Mage = 39.3, SDage = 12.9). As shown in Table 2, the average offer from these subjects was

29The exact instructions are provided in the appendix.
30Bartling, Engl, and Weber (2015) use a “multiple price list” RBC to elicit willingness-to-pay (WTP)

and willingness-to-accept (WTA) for both money (as in CP) and goods. They also use a deterministic belief
question to assess whether subjects understand the payoffs for money and find that subjects who appear to
understand the payoffs for money still exhibit WTP-WTA disparities for the good. Brebner and Sonnemans
(2018) compare choices between the BDM and the multiple price list RBC and find that the WTP-WTA
gap is similar between for the protocols they use.
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Figure 10: Offers in our baseline replication and new protocol.

$1.50, which is $0.20 lower than the average offer from subjects in the baseline replication.
The distribution of offers for the contingent protocol and the baseline replication are provided
in Figure 10, and these distributions are significantly different at a 5% level (p=0.0016 for
a two-tailed Wilcoxon rank-sum test). Importantly, 34.9% of offers were near $1 with the
contingent protocol, which is roughly double the percentage in the baseline replication, and
these proportions are significantly different at a 5% level (p=0.0001 for a two-tailed test of
proportions). In addition, there is a much higher average implied belief for the contingent
protocol. The average implied belief for consistent subjects increases by over 20 percentage
points, and the average implied belief significantly different at a 5% level (p<0.0001 for a
two-tailed Wilcoxon rank-sum test). Both of these findings – the decrease in average offers
and the increase in average implied beliefs – are consistent with the theoretical comparative
static prediction for the cost of information.

4.4 Other Explanations for Mistaken Offers

Because there are many possible explanations for mistakes in BDM experiments besides
misperception, we use this section to investigate several of these possibilities. We examine not
just their ability to explain the mistakes observed in the CP experiment and our experiments,
but their ability to explain the difference in offers between our baseline replication and
contingent protocol.
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Contingent Baseline Contingent=Baseline
protocol replication p-value

Observations 192 190
Mean offer $1.50 $1.70 0.0016***

($0.70) ($0.73)
Percent offer near $1 34.9% 17.4% 0.0001***
Mean offer if not near $1 $1.76 $1.85 0.1205

($3.25) ($2.97)
Consistent with misperception 78.6% 70.0% 0.0530*
Mean belief of BDM (if consistent) 66.4% 45.6% <0.0001***

(39.3%) (43.2%)

Table 2: Summary statistics for our new protocol and baseline replication. An offer
is “near $1” if it is within $0.05 of $1. Standard errors are in parentheses. p-values are from
two-tailed tests of proportion for percents and from two-tailed Wilcoxon rank-sum tests otherwise.
*** p<0.01; ** p<0.05; * p<0.10.

4.4.1 Other Behavioral Biases

A number of behavioral biases could impact the offers made in BDM experiments.31 For
example, the endowment effect lead to higher offers in the BDM because ownership creates a
reference point from which losses are experienced, and the direct benefits to ownership could
lead to higher offers in the BDM because ownership creates positive feelings that make the
good feel higher valued. With bad deal aversion, agents could set higher offers in the BDM
as not to get a bad deal relative to a reference point when selling the good, and with the
buy-low sell-high heuristic, they might follow an optimal rule from the world in which first
offers are higher (in anticipation of future bargaining).

However, many of these behavioral theories do not predict a change in offers between
our baseline replication of the CP BDM and our new protocol because we hold the extensive
form, payoffs, and role fixed between the two protocols. For instance, behavioral biases based
on ownership of the token, such as the endowment effect and the direct benefits of ownership
such as positive feelings about the good, do not suggest a change in behavior, given that
ownership is unaffected by our change in protocol. In addition, behavioral biases based on
the maximum payment, such as anchoring on the maximum possible payoff and attraction to
the maximum possible payoff, do not suggest a change, given that the distribution of posted
prices (particularly the maximum posted price) does not change. Finally, behavioral biases
based on being a seller, such as “bad deal” aversion and the “buy-low sell-high” heuristic,

31CP and Brebner and Sonnemans (2018) provide a comprehensive and detailed discussion of the possible
explanations for mistakes in the BDM.
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do not suggest a change, given that the subject is still in the role of seller.

One behavioral bias that can explain the change in offers we see with our new protocol
is framing effects. For instance, this protocol could induce a framing effect based on the
repeated appearance of $1 in the instructions, which could make offering $1 a more salient
action or even make $1 the reference point.

4.4.2 Decision-Making Noise and All-Or-Nothing Misperception

In addition to these behavioral biases, mistakes could arise in the BDM if agents have
decision-making noise unrelated to their perception of the game form. Further, the movement
in offers towards the dominant strategy with our new contingent protocol could be explained
with a reduction in such decision-making noise.

However, using maximum likelihood estimation (MLE), we find that a representative
agent model of decision-making noise based on logit errors fits the data significantly better
(in a statistical sense) if it also allows for partial game form recognition, as in our model.
We also find that partial game form recognition fits the data significantly better than all-or-
nothing game form recognition.32

As in CP, we first examine the possibility that choice mistakes are driven purely by
decision-making noise by using maximum likelihood to estimate the “noise” parameter λ
that best explains offers. This parameter is taken from the Quantal Response Equilibrium
(QRE) approach in which the likelihood of taking an action takes the form of a multinomial
logit. A feature of this approach is that the frequency of taking an action is increasing its
relative payoff.

To nest several models, we will use the function li(γ, λ), which is the likelihood of offer bi
if the agent has belief of the BDM γ and has noise parameter λ. For the QRE specification,

ln li(γ, λ) = ln eλE[payoff for γ|bi]∑
k∈K eλE[payoff for γ|bk] (10)

where E[payoff for γ|bi] = 1
p̄
(θbi+ .5γp̄2 +(1−γ)bip̄−(1− .5γ)b2

i ) and K is the set of possible
offers.33

Thus, to estimate λ for a representative agent model with noise but no misperception,
we set γ = 1 and find

arg max
λ

∑
i∈I

ln li(1, λ) = arg max
λ

∑
i∈I

ln eλE[payoff for γ=1|bi]∑
k∈K eλE[payoff for γ=1|bk] (11)

32In the body of the text, we present the results for the baseline replication and contingent protocol, and
in the appendix, we show that the same holds for the data from the CP experiment.

33We follow CP by discretizing the space of offers, but because the increment of posted prices is $0.50, we
use $0.50 instead of $0.10.
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where bi is the offer of subject i and I is set of subjects. We solve this problem using the
Nelder-Mead method with 1,000 random started values, and standard errors were computed
using 1,000 bootstrapping samples. As shown in Table 3, the parameter that best explains
the data is 0.8040.

CP also estimate an all-or-nothing model of game form misrecognition in which there is
a probability M that subjects believe they are facing the FPA. Specifically, they solve

arg max
λ,M

∑
i∈I

ln [(1−M)li(1, λ) +Mli(0, λ)] (12)

We estimate their mixture model using the Nelder-Mead method with 1,000 random started
values, and standard errors were computed using 1,000 bootstrapping samples. We estimate
that 84.7% of subjects are playing as if they are facing a first price auction in the baseline
replication and 36.9% in the contingent protocol. The estimate of λ is higher than with just
noise: rising from 0.8040 to 2.1864, which means that less error is needed to explain the data
(λ = 0 produces purely random choice).

To add partial game form recognition, we make one small change to the CP estimation.
Instead of estimating a mixture between no game form misrecognition (li(1, λ)) and full game
form misrecognition (li(0, λ)), we estimate a mixture between no game form misrecognition
(li(1, λ)) and partial game form misrecognition (li(γ, λ)). By allowing for a representative
posterior that captures uncertainty, we add another parameter to the model. Thus, we solve

arg max
λ,M,γ

∑
i∈I

ln [(1−M)li(1, λ) +Mli(γ, λ)] (13)

With this, we can estimate a very simple representative agent version of our model, which
can be interpreted as a “representative belief” model. In principle, we could consider richer
models, such as a representative information structure with two γ’s. In this case, M could
be interpreted as the probability of each belief.

We once again use the Nelder-Mead method with 1,000 random started values to perform
our estimations, and compute standard errors using 1,000 bootstrapping samples. Using this
mixture model, we find that 100% of subjects are classified as playing as if they are unsure
of the mechanism in the baseline replication and the contingent protocol. The belief γ that
best explains the data is being 39.1% sure of the correct game form in the baseline replication
and 66.2% in the contingent protocol. The estimate of λ is once again higher than with just
noise: rising from 0.8040 to 2.8786, which means that less error is needed to explain the
data. The levels of error needed for the CP mixture model and the γ mixture model are not
statistically different.

Because these models are nested (the noise-only model in the CP all-or-nothing mixture
model and the CP all-or-nothing mixture model in the γ mixture model), we can use a
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Noise-only model CP mixture model γ mixture model
λ 0.8040 2.1864 2.8786

(0.4049) (0.9865) (0.5207)
90% conf. interval [0.2197,1.5776] [1.5052,4.4470] [2.1203,3.8295]
M 0.8465 1.0000

(0.1550) (0.0000)
90% conf. interval [0.5734,1.0000] [1.0000,1.0000]
γ 0.3914

(0.0972)
90% conf. interval [0.2194,0.5352]
Avg. log likelihood -1.9322 -1.7929 -1.7693
Log likelihood -367.1215 -340.6568 -336.1607

(a) Baseline replication

Noise-only model CP mixture model γ mixture model
λ 2.3937 3.8515 4.1224

(0.6101) (1.3467) (0.7113)
90% conf. interval [1.6090,3.6029] [2.3677,6.7400] [3.1602,5.4883]
M 0.3693 1.0000

(0.0961) (0.0000)
90% conf. interval [0.2521,0.5443] [1.0000,1.0000]
γ 0.6615

(0.0494)
90% conf. interval [0.5794,0.7445]
Avg. log likelihood -1.8558 -1.8048 -1.7372
Log likelihood -358.1783 -348.3308 -335.2868

(b) Contingent protocol

Table 3: Maximum likelihood estimates of different models. Standard errors are in parentheses.
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likelihood ratio test to look for evidence of whether the fit of the model with more parameters
is significantly better than the fit of the model with fewer parameters. With large samples,
twice the difference in likelihoods should be distributed as a χ2 statistic with degrees of
freedom equal to the difference in the number of parameters in the model. For one degree
of freedom, the critical value for a significance level of 1% is 6.635.

For the baseline replication, twice the difference in likelihoods between the CP mixture
model and noise-only model is 52.9294, which is well above 6.635, so the CP mixture model
has significantly better fit. For the CP mixture model and the γ mixture model, twice the
difference is 8.9922, which is again above 6.635, so the γ mixture model has significantly
better fit. For the contingent protocol, the twice the difference in likelihoods between the
CP mixture model and noise-only model is 19.695, so again the CP mixture model has
significantly better fit. For the CP mixture model and the γ mixture model, it is 26.088, so
here too the γ mixture model has significantly better fit.

5 Conclusion and Discussion

In this paper, we take a standard model of imperfect perception – receiving a noisy mental
signal of the environment – and use it to model an agent’s misperception of the BDM
mechanism. Our approach provides an as if representation for agents who may have trouble
thinking through the mechanism’s complex payoff rule.

The primary limitation of our approach is that the set of extensive forms that are confused
with a given extensive form must be specified, which provides a significant modeling challenge
and gives the modeler a substantial degree of freedom. However, for the BDM mechanism,
the extensive form it might be confused with has been independently identified. Based on
this external justification, we can explain most dominated offers in the CP experiment and
measure the extent of misperception in their experiment.

We sharpen our model by assuming that mental signals are costly, and this generates
comparative static predictions for the costs and benefits of more accurate perception. By
reexamining the data from the CP experiment and generating data with new experiments, we
are able to test these predictions, and we find that behavior is consistent with our theoretical
predictions.

Because we leave the game form unchanged between our contingent protocol and baseline
replication, the difference in mistakes between these experiments is plausibly related to a
reduction in misperception. The remaining mistakes we observe with the contingent protocol
could be due to lingering misperceptions or other behavioral biases. However, it should be
noted that our model of misperception is compatible with other behavioral biases. For
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example, our model could incorporate an endowment effect that increases the value of the
good, which would generate an interaction between endowment effects and misperceptions.
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6 Appendix

6.1 Discrete Offers

In this section we derive the optimal offer strategy when offers are discrete, which is often
the case in practice. First we examine the simple case of unitary increments in offers (in the
units of θ) and then we generalize to increments of size z.

6.1.1 Unitary Increments

We first derive the optimal strategy for the BDM case when offers are discrete. As in the
continuous model, we assume that agent sells as long as the posted price p is at least equal
to the offered price b. Offering the own valuation θ is a weakly dominant strategy. θ + 1
yields to the same payoff in expectation.

To see that θ is weakly dominant, consider a fixed offer price b ≤ θ − 1, and compare it
to the payoff of offering θ. The agent gets the same payoff as offering θ if the realization of
p lies in [0, b − 1] (in which case gets θ) or in [θ, p̄] (in which case gets p). For the interval
[b, θ − 1], the payoff of offering θ dominates the payoff of offering b. On the other hand,
offering b ≥ θ + 2 there is a positive chance of making a negative payoff, so it is dominated
by offering θ. It is easy to see that θ + 1 yields the same payoff in expectation, by writing
the payoff and manipulating the expression.

On the other hand, in a FPA with discrete offers, the agent’s expected payoff from offering
b is ∑

p∈{0,1,...,p̄}
θ1[p < b] + b1[p ≥ b] = θ Prob[p < b] + b Prob[p ≥ b]

= θ Prob[p ≤ b− 1] + b (1− Prob[p ≤ b− 1])

Because p is uniformly distributed on the finite set {0, 1, . . . , p̄} the former expression
becomes

θ
b

p̄+ 1 + b

(
1− b

p̄+ 1

)
Since p̄+ 1 > 0, we are interested in finding b s.t. b(θ + p̄+ 1)− b2 is maximal. This can be
rewritten as

−
(
b− θ + p̄+ 1

2

)2

+ (θ + p̄+ 1)2

4
which is a quadratic function of b that reaches the maximum at b∗, with

b∗ =


θ+p̄+1

2 , if θ + p̄+ 1 is even{
θ+p̄

2 , θ+p̄2 + 1
}
, if θ + p̄+ 1 is odd.
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With uncertainty about the game form, the expected payoff for offering b when agent
assigns probability γ to the game form being the BDM is,

θProb[p < b] + Ep[(γp+ (1− γ)b)1[p ≥ b]]

which reduces to
θ

b

p̄+ 1 + γEp[p1[p ≥ b]] + (1− γ)b
(

1− b

p̄+ 1

)

Since Ep[p1[p ≥ b]] = ∑p̄
i=b

i
p̄+1 = 1

2(p̄+1) [p̄(p̄+ 1)− (b− 1)b], we have

θ
b

p̄+ 1 + γ
1

2(p̄+ 1)(p̄2 − b2) + γ
1

2(p̄+ 1)(b+ p̄)− (1− γ) b2

p̄+ 1 + (1− γ)b

rearranging,

−
(

1− γ
p̄+ 1 + γ

2(p̄+ 1)

)
b2 +

(
θ

p̄+ 1 + γ

2(p̄+ 1) + 1− γ
)
b+ γ

2(p̄+ 1)
(
p̄2 + p̄

)
since this is a concave function in b, we always have interior solution. By symmetry, it
happens at either K = 1

2
2θ+γ+2(1−γ)(p̄+1)

2−γ = θ+p̄−γp̄
2−γ + 1

2 if K is integer34; otherwise, at the
closest integer. More explicitly,

b∗ =

bKe, if K − bKc 6= 0.5,
{bKc, dKe}, otherwise.

(14)

Observe that if γ = 0, 1 we obtain the expected optimal offers for the BDM and FPA
above derived.

6.1.2 Fractional Increments

We now consider the case where offers on a grid of mesh z on [0, p̄] are allowed. In other
words, agents can offer 0, z, 2z, 3z, ..., p̄.

This case is equivalent to solving the problem with unitary increments on [0, p̄
z
] and

realized type θ
z
which yields the optimal offer b∗ as in (14). In the original game, the optimal

offer corresponds then to the transformation b∗z = zb∗.

More explicitly, for the problem with mesh z, define

K ′ =
θ
z

+ p̄
z
− γ p̄

z

2− γ + 1
2

34K is decreasing in γ. Hence a tight upper bound for K is p̄+ 1
2 , reached when θ = p̄. In this case, it is

optimal to offer either p̄ or p̄+ 1, the latter interpreted as no selling, which was a priori obvious.
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Hence, the optimal offer price is given by

b∗z =

zbK
′e, if K ′ − bK ′c 6= 0.5,

{zbK ′c, zdK ′e}, otherwise.

Observe also that as z goes to 0, the solution converges to the continuous case.

6.2 Alternative Game Forms

In this section, we show how the optimal offer strategy changes as we change the game form
agents confuse with the BDM. Some of these alternative game forms were proposed by CP
after observing the distribution of offers, but were deemed to be unlikely.

As these optimal offers show, the testable implications of our approach depend on the
alternative game form that is selected. For instance, in some cases only offers at or below θ

are consistent, and in other cases only offers at or above θ are consistent. Some cases even
allow offers to be above the maximum posted price p̄.

Alternative payment
rule

Expected payoff Map between offer and beliefs

Posted price p is paid,
regardless of winning

E[γ(θ1[p < b] + p1[p ≥ b]) + (1− γ)p] b∗(γ) =
{
θ, if γ ∈ (0, 1],
x ∈ R, γ = 0.

Offer b is paid, regard-
less of winning

E[γ(θ1[p < b] + p1[p ≥ b]) + (1− γ)b] b∗(γ) =
{
θ + 1−γ

γ p̄ if γ ∈ (0, 1]
∞ γ = 0.

Paid theta only if offer
is below posted price,
nothing otherwise

E[γ(θ1[p < b] + p1[p ≥ b]) + (1− γ)θ1[p ≥ b]] b∗(γ) =
{

θ
γ if γ ∈ (0, 1]
0 if γ = 0.

Paid offer only if offer
is below posted price,
nothing otherwise

E[γ(θ1[p < b] + p1[p ≥ b]) + (1− γ)b1[p ≥ b]] b∗(γ) = γθ+(1−γ)p̄
2−γ

Paid posted price if of-
fer below posted price,
nothing otherwise

E[γ(θ1[p < b] + p1[p ≥ b]) + (1− γ)p1[p ≥ b]] b∗(γ) = γθ

6.3 Additional Robustness Check: Within-Subject Comparisons

Because our robustness check was based on variation between subjects, we ran an additional
robustness check in which 137 subjects first completed the BDM with $0.01 increments
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and then either our baseline replication (with $0.50 increments) or our contingent protocol,
separated by 5 months. This design allows us to perform a within-subject analysis of the
impact of changes in the protocol. However, there is the possibility that learning occurred
between rounds, so we do not use this as our primary robustness check and we do not include
these subjects in any of our other analyses.

For the 74 subjects who completed the BDM with $0.01 increments and our baseline
replication, there is an increase in offers of 0.081 on average, but this is not statistically
different from 0 using a two-tailed t-test (p-value=0.3843). On the other hand, because our
baseline replication has more offer prices at increments of $0.50, there is actually a 9.5%
increase in the probability of offering near the value of the token, and this is statistically
different from 0 (p-value=0.0073).

On the other hand, for the 63 subjects who completed the BDM with $0.01 increments
and our contingent protocol, there is a decrease in offers on average (a drop of 0.075), but
this is also not statistically different from zero using a two-tailed t-test (p-value=0.5588).
At the same time, there is a much larger increase in the probability of offering near the
value of the token with this protocol (23.8%), which is highly statistically different from a
0% increase (p-value<0.0001).

6.4 MLE Results for the CP Experiment

Here we apply the MLE strategy introduced in the body of the text to the two rounds of
the CP experiment, and the results are similar to our results for the baseline replication and
contingent protocol.

First, we estimate the noise-only model and mixture model from CP using the Nelder-
Mead method with 1,000 random started values.35 Standard errors were computed using
1,000 bootstrapping samples. We find that 65.0% of subjects are classified as playing as if
they are facing a first price auction on the first card and 41.1% on the second card.

Next, we estimate the representative agent version of our model, and we find that 84.4%
of subjects are classified as playing as if they are unsure of the mechanism on the first card
and 87.8% on the second card. While these rates are similar, the belief γ that best explains
the data is being 41.1% sure of the correct game form on the first card and 61.9% on the
second card.

Because these models are nested, we can use a likelihood ratio test to look for evidence of
whether fits are significantly better. With large samples, twice the difference in likelihoods
should be distributed as a χ2 statistic with degrees of freedom equal to the difference in

35For comparability, we follow CP by removing all offers over p̄ and rounding offers to $0.10.

42



the number of parameters in the model. For one degree of freedom, the critical value for a
significance level of 1% is 6.635, so for both rounds, the CP mixture model has significantly
better fit than the noise-only model, and the γ mixture model has significantly better fit
than the CP mixture model.
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Noise-only model CP mixture model γ mixture model
λ 0.9833 4.4932 3.9626

(0.1609) (0.9398) (1.0408)
90% conf. interval [0.7399,1.2649] [3.2787,6.4129] [3.1459,6.4437]
M 0.6499 0.8443

(0.0465) (0.0798)
90% conf. interval [0.5756,0.7302] [0.7048,0.9704]
γ 0.4107

(0.0870)
90% conf. interval [0.2358,0.5244]
Avg. log likelihood -4.0228 -3.8055 -3.7608
Log likelihood -985.5835 -932.3379 -921.4038

(a) Round 1 (N=245)

Noise-only model CP mixture model γ mixture model
λ 1.2628 3.4536 2.6909

(0.2646) (1.1599) (0.5375)
90% conf. interval [0.8928,1.7440] [2.1001,6.0094] [2.0811,3.6415]
M 0.4107 0.8781

(0.0561) (0.1052)
90% conf. interval [0.3253,0.5099] [0.6968,1.0000]
γ 0.6188

(0.0711)
90% conf. interval [0.4947,0.7068]
Avg. log likelihood -4.0013 -3.9198 -3.8824
Log likelihood -968.3104 -948.5934 -939.5417

(b) Round 2 (N=242)

Table 4: Maximum likelihood estimates of different models. Standard errors are in parentheses.
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6.5 Experimental Instructions

Baseline Replication

You have one digital token that is worth $1 to you. You can sell it. Name your offer
price: $

A "posted" price will be drawn randomly between $0 and $3 (in increments of
$0.50). Every possible posted price ($0, $0.50, $1, $1.50, $2, $2.50, and $3) has an equal
chance of being selected.

If your offer price is at or below the posted price, then you sell your token at the posted
price.

If your offer price is above the posted price, then you do not sell your token, but you do
collect the $1 value of the token.

Contingent Protocol

You have one digital token that can be exchanged for $1 or sold to a computer bidder.

Here is how your bonus payment is determined:

1. You will name the minimum amount you are willing to sell your token (it might sell
for more).

2. We will randomly select 1 of the 7 computer bidders listed below (each is equally likely
to be selected).

3. You will keep your token if the minimum amount you are willing to sell it is above the
computer’s bid. Otherwise, you will sell your token at the computer’s bid.

Bidder Bid If your minimum amount is above their bid Otherwise
A $0 $1 $0
B $0.50 $1 $0.50
C $1 $1 $1
D $1.50 $1 $1.50
E $2 $1 $2
F $2.50 $1 $2.50
G $3 $1 $3

Name the minimum amount you are willing to sell the token for: $

45



Robustness Check

You have one digital token that is worth $1 to you. You can sell it. Name your offer
price: $

A "posted" price will be drawn randomly between $0 and $3 (in increments of
$0.01). Every possible posted price has an equal chance of being selected.

If your offer price is at or below the posted price, then you sell your token at the posted
price.

If your offer price is above the posted price, then you do not sell your token, but you do
collect the $1 value of the token.

Robustness Check (with Statement)

You have one digital token that is worth $1 to you. You can sell it.

The rule for selling the token is given below. It is a bit unusual, but its implications are
straightforward. There is no way of gaming the rule, the BEST thing that you can
do is to ask yourself how much you would be willing to exchange the token for,
and then offer the number closest to that amount.

Name your offer price: $

A "posted" price will be drawn randomly between $0 and $3 (in increments of
$0.01). Every possible posted price has an equal chance of being selected.

If your offer price is at or below the posted price, then you sell your token at the posted
price.

If your offer price is above the posted price, then you do not sell your token, but you do
collect the $1 value of the token.
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